metadata
library_name: transformers
license: gemma
base_model: google/gemma-2-2b
tags:
- axolotl
- generated_from_trainer
model-index:
- name: gemma-2-2b-magpie-gemma2-9b-flash
results: []
See axolotl config
axolotl version: 0.4.1
base_model: google/gemma-2-2b
model_type: Gemma2ForCausalLM
tokenizer_type: AutoTokenizer
chat_template: gemma
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: flydust/Magpie-100k-Gemma2-9B
type: sharegpt
chat_template: gemma
dataset_prepared_path: last_run_prepared
val_set_size: 0.001
output_dir: axolotl_out/gemma-2-2b-magpie-gemma2-9b-flash
sequence_len: 4096
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true
wandb_project: SynDa
wandb_entity:
wandb_watch:
wandb_name: gemma-2-2b-magpie-gemma2-9b-flash
wandb_log_model:
hub_model_id: flydust/gemma-2-2b-magpie-gemma2-9b-flash
gradient_accumulation_steps: 8
micro_batch_size: 1
num_epochs: 2
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 2e-5
train_on_inputs: false
group_by_length: false
bf16: true
fp16:
tf32: false
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
xformers_attention:
# Disable flash attention
flash_attention: true
# sdp_attention: falses
# eager_attention: true
warmup_ratio: 0.1
evals_per_epoch: 5
eval_table_size:
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
gemma-2-2b-magpie-gemma2-9b-flash
This model is a fine-tuned version of google/gemma-2-2b on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.6632
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- total_eval_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 86
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.0962 | 0.0023 | 1 | 1.1980 |
0.7173 | 0.2012 | 87 | 0.7592 |
0.6728 | 0.4023 | 174 | 0.7202 |
0.6686 | 0.6035 | 261 | 0.6960 |
0.604 | 0.8046 | 348 | 0.6751 |
0.4864 | 1.0038 | 435 | 0.6656 |
0.4762 | 1.2049 | 522 | 0.6694 |
0.4573 | 1.4061 | 609 | 0.6661 |
0.468 | 1.6072 | 696 | 0.6629 |
0.453 | 1.8084 | 783 | 0.6632 |
Framework versions
- Transformers 4.45.0.dev0
- Pytorch 2.4.1+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1