modernbert-base-conll2012_ontonotesv5-english_v4-ner

This model is a fine-tuned version of answerdotai/ModernBERT-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0679
  • Precision: 0.8636
  • Recall: 0.8704
  • F1: 0.8670

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1
0.0698 1.0 2350 0.0795 0.8121 0.8344 0.8231
0.0356 2.0 4700 0.0707 0.8438 0.8575 0.8506
0.0184 3.0 7050 0.0795 0.8461 0.8567 0.8513

Framework versions

  • Transformers 4.48.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.1.0
  • Tokenizers 0.21.0
Downloads last month
19
Safetensors
Model size
150M params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for fongios/modernbert-base-conll2012_ontonotesv5-english_v4-ner

Finetuned
(209)
this model