|
--- |
|
license: cc-by-4.0 |
|
pipeline_tag: automatic-speech-recognition |
|
--- |
|
# Model Card for whisper-large-v3-formosan-iso-prompt |
|
|
|
<!-- Provide a quick summary of what the model is/does. --> |
|
This model is a early fine-tuned version of the Taiwanese indigenous [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3), which uses the ids of each dialect as prompts during training. |
|
Note: we use indonesian as whisper language id |
|
|
|
## Dialect and Id |
|
- 阿美語: ami |
|
- 賽德克語: sdq |
|
- 太魯閣語: trv |
|
|
|
### Training process |
|
The training of the model was performed with the following hyperparameters |
|
|
|
- Batch size: 32 |
|
- Epochs: 4 |
|
- Warmup Steps: 1170 |
|
- Total Steps: 11700 |
|
- Learning rate: 7e-5 |
|
- Data augmentation: No |
|
|
|
|
|
### How to use |
|
|
|
```python |
|
import torch |
|
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline |
|
device = "cuda:0" if torch.cuda.is_available() else "cpu" |
|
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 |
|
model_id = "formospeech/whisper-large-v3-formosan-iso-prompt" |
|
dialect_id = "ami" |
|
model = AutoModelForSpeechSeq2Seq.from_pretrained( |
|
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True |
|
) |
|
model.to(device) |
|
processor = AutoProcessor.from_pretrained(model_id) |
|
pipe = pipeline( |
|
"automatic-speech-recognition", |
|
model=model, |
|
tokenizer=processor.tokenizer, |
|
feature_extractor=processor.feature_extractor, |
|
max_new_tokens=128, |
|
chunk_length_s=30, |
|
batch_size=16, |
|
torch_dtype=torch_dtype, |
|
device=device, |
|
) |
|
generate_kwargs = {"language": "id", "prompt_ids": torch.from_numpy(processor.get_prompt_ids(dialect_id)).to(device)} |
|
transcription = pipe("path/to/my_audio.wav", generate_kwargs=generate_kwargs) |
|
print(transcription.replace(f" {dialect_id}", "")) |
|
``` |