franciscoafy's picture
Update README.md
0d124b6
|
raw
history blame
2.06 kB
metadata
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
  - image-classification
  - generated_from_trainer
model-index:
  - name: vit-base-patch16-224-franciscoflores-classification
    results: []
metrics:
  - accuracy
language:
  - en
  - es

vit-base-patch16-224-franciscoflores-classification

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the julien-c/hotdog-not-hotdog dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0074
  • Accuracy :0.9966

Model description

Modelo de clasificacion binaria de imagenes proveniente del modelo 'google/vit-base-patch16-224-in21k', este modelo se encarga de clasificacion de imagenes de comida en donde indica cuales imagenes son comida y cuales no ///////This is a binary image classification model based on the 'google/vit-base-patch16-224-in21k' model. It is designed for classifying images of food, indicating which images depict food and which ones do not

Intended uses & limitations

More information needed

Training and evaluation data

el dataset utilizado para su entrenamiento es "sasha/dog-food" The dataset used for its training is "sasha/dog-food."

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss
0.045 1.9 500 0.0828
0.0081 3.8 1000 0.0074

Framework versions

  • Transformers 4.33.1
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3