metadata
library_name: sklearn
license: mit
tags:
- sklearn
- skops
- tabular-classification
model_format: pickle
model_file: RandomForestClassifier.joblib
widget:
- structuredData:
age:
- 50
- 31
- 32
bd2:
- 0.627
- 0.351
- 0.672
id:
- ICU200010
- ICU200011
- ICU200012
insurance:
- 0
- 0
- 1
m11:
- 33.6
- 26.6
- 23.3
pl:
- 148
- 85
- 183
pr:
- 72
- 66
- 64
prg:
- 6
- 1
- 8
sepsis:
- Positive
- Negative
- Positive
sk:
- 35
- 29
- 0
ts:
- 0
- 0
- 0
Model description
[More Information Needed]
Intended uses & limitations
[More Information Needed]
Training Procedure
[More Information Needed]
Hyperparameters
Click to expand
Hyperparameter | Value |
---|---|
memory | |
steps | [('preprocessor', ColumnTransformer(transformers=[('numerical_pipeline', Pipeline(steps=[('log_transformations', FunctionTransformer(func=<ufunc 'log1p'>)), ('imputer', SimpleImputer(strategy='median')), ('scaler', RobustScaler())]), ['prg', 'pl', 'pr', 'sk', 'ts', 'm11', 'bd2', 'age']), ('categorical_pipeline', Pipeline(steps=[('as_categorical', FunctionTransformer(func=<function as_... handle_unknown='infrequent_if_exist', sparse_output=False))]), ['insurance']), ('feature_creation_pipeline', Pipeline(steps=[('feature_creation', FunctionTransformer(func=<function feature_creation at 0x000001E7F14514E0>)), ('imputer', SimpleImputer(strategy='most_frequent')), ('encoder', OneHotEncoder(drop='first', handle_unknown='infrequent_if_exist', sparse_output=False))]), ['age'])])), ('feature-selection', SelectKBest(k='all', score_func=<function mutual_info_classif at 0x000001E7EDA4E480>)), ('classifier', RandomForestClassifier(n_jobs=-1, random_state=2024))] |
verbose | False |
preprocessor | ColumnTransformer(transformers=[('numerical_pipeline', Pipeline(steps=[('log_transformations', FunctionTransformer(func=<ufunc 'log1p'>)), ('imputer', SimpleImputer(strategy='median')), ('scaler', RobustScaler())]), ['prg', 'pl', 'pr', 'sk', 'ts', 'm11', 'bd2', 'age']), ('categorical_pipeline', Pipeline(steps=[('as_categorical', FunctionTransformer(func=<function as_... handle_unknown='infrequent_if_exist', sparse_output=False))]), ['insurance']), ('feature_creation_pipeline', Pipeline(steps=[('feature_creation', FunctionTransformer(func=<function feature_creation at 0x000001E7F14514E0>)), ('imputer', SimpleImputer(strategy='most_frequent')), ('encoder', OneHotEncoder(drop='first', handle_unknown='infrequent_if_exist', sparse_output=False))]), ['age'])]) |
feature-selection | SelectKBest(k='all', score_func=<function mutual_info_classif at 0x000001E7EDA4E480>) |
classifier | RandomForestClassifier(n_jobs=-1, random_state=2024) |
preprocessor__force_int_remainder_cols | True |
preprocessor__n_jobs | |
preprocessor__remainder | drop |
preprocessor__sparse_threshold | 0.3 |
preprocessor__transformer_weights | |
preprocessor__transformers | [('numerical_pipeline', Pipeline(steps=[('log_transformations', FunctionTransformer(func=<ufunc 'log1p'>)), ('imputer', SimpleImputer(strategy='median')), ('scaler', RobustScaler())]), ['prg', 'pl', 'pr', 'sk', 'ts', 'm11', 'bd2', 'age']), ('categorical_pipeline', Pipeline(steps=[('as_categorical', FunctionTransformer(func=<function as_category at 0x000001E7F1450680>)), ('imputer', SimpleImputer(strategy='most_frequent')), ('encoder', OneHotEncoder(drop='first', handle_unknown='infrequent_if_exist', sparse_output=False))]), ['insurance']), ('feature_creation_pipeline', Pipeline(steps=[('feature_creation', FunctionTransformer(func=<function feature_creation at 0x000001E7F14514E0>)), ('imputer', SimpleImputer(strategy='most_frequent')), ('encoder', OneHotEncoder(drop='first', handle_unknown='infrequent_if_exist', sparse_output=False))]), ['age'])] |
preprocessor__verbose | False |
preprocessor__verbose_feature_names_out | True |
preprocessor__numerical_pipeline | Pipeline(steps=[('log_transformations', FunctionTransformer(func=<ufunc 'log1p'>)), ('imputer', SimpleImputer(strategy='median')), ('scaler', RobustScaler())]) |
preprocessor__categorical_pipeline | Pipeline(steps=[('as_categorical', FunctionTransformer(func=<function as_category at 0x000001E7F1450680>)), ('imputer', SimpleImputer(strategy='most_frequent')), ('encoder', OneHotEncoder(drop='first', handle_unknown='infrequent_if_exist', sparse_output=False))]) |
preprocessor__feature_creation_pipeline | Pipeline(steps=[('feature_creation', FunctionTransformer(func=<function feature_creation at 0x000001E7F14514E0>)), ('imputer', SimpleImputer(strategy='most_frequent')), ('encoder', OneHotEncoder(drop='first', handle_unknown='infrequent_if_exist', sparse_output=False))]) |
preprocessor__numerical_pipeline__memory | |
preprocessor__numerical_pipeline__steps | [('log_transformations', FunctionTransformer(func=<ufunc 'log1p'>)), ('imputer', SimpleImputer(strategy='median')), ('scaler', RobustScaler())] |
preprocessor__numerical_pipeline__verbose | False |
preprocessor__numerical_pipeline__log_transformations | FunctionTransformer(func=<ufunc 'log1p'>) |
preprocessor__numerical_pipeline__imputer | SimpleImputer(strategy='median') |
preprocessor__numerical_pipeline__scaler | RobustScaler() |
preprocessor__numerical_pipeline__log_transformations__accept_sparse | False |
preprocessor__numerical_pipeline__log_transformations__check_inverse | True |
preprocessor__numerical_pipeline__log_transformations__feature_names_out | |
preprocessor__numerical_pipeline__log_transformations__func | <ufunc 'log1p'> |
preprocessor__numerical_pipeline__log_transformations__inv_kw_args | |
preprocessor__numerical_pipeline__log_transformations__inverse_func | |
preprocessor__numerical_pipeline__log_transformations__kw_args | |
preprocessor__numerical_pipeline__log_transformations__validate | False |
preprocessor__numerical_pipeline__imputer__add_indicator | False |
preprocessor__numerical_pipeline__imputer__copy | True |
preprocessor__numerical_pipeline__imputer__fill_value | |
preprocessor__numerical_pipeline__imputer__keep_empty_features | False |
preprocessor__numerical_pipeline__imputer__missing_values | nan |
preprocessor__numerical_pipeline__imputer__strategy | median |
preprocessor__numerical_pipeline__scaler__copy | True |
preprocessor__numerical_pipeline__scaler__quantile_range | (25.0, 75.0) |
preprocessor__numerical_pipeline__scaler__unit_variance | False |
preprocessor__numerical_pipeline__scaler__with_centering | True |
preprocessor__numerical_pipeline__scaler__with_scaling | True |
preprocessor__categorical_pipeline__memory | |
preprocessor__categorical_pipeline__steps | [('as_categorical', FunctionTransformer(func=<function as_category at 0x000001E7F1450680>)), ('imputer', SimpleImputer(strategy='most_frequent')), ('encoder', OneHotEncoder(drop='first', handle_unknown='infrequent_if_exist', sparse_output=False))] |
preprocessor__categorical_pipeline__verbose | False |
preprocessor__categorical_pipeline__as_categorical | FunctionTransformer(func=<function as_category at 0x000001E7F1450680>) |
preprocessor__categorical_pipeline__imputer | SimpleImputer(strategy='most_frequent') |
preprocessor__categorical_pipeline__encoder | OneHotEncoder(drop='first', handle_unknown='infrequent_if_exist', sparse_output=False) |
preprocessor__categorical_pipeline__as_categorical__accept_sparse | False |
preprocessor__categorical_pipeline__as_categorical__check_inverse | True |
preprocessor__categorical_pipeline__as_categorical__feature_names_out | |
preprocessor__categorical_pipeline__as_categorical__func | <function as_category at 0x000001E7F1450680> |
preprocessor__categorical_pipeline__as_categorical__inv_kw_args | |
preprocessor__categorical_pipeline__as_categorical__inverse_func | |
preprocessor__categorical_pipeline__as_categorical__kw_args | |
preprocessor__categorical_pipeline__as_categorical__validate | False |
preprocessor__categorical_pipeline__imputer__add_indicator | False |
preprocessor__categorical_pipeline__imputer__copy | True |
preprocessor__categorical_pipeline__imputer__fill_value | |
preprocessor__categorical_pipeline__imputer__keep_empty_features | False |
preprocessor__categorical_pipeline__imputer__missing_values | nan |
preprocessor__categorical_pipeline__imputer__strategy | most_frequent |
preprocessor__categorical_pipeline__encoder__categories | auto |
preprocessor__categorical_pipeline__encoder__drop | first |
preprocessor__categorical_pipeline__encoder__dtype | <class 'numpy.float64'> |
preprocessor__categorical_pipeline__encoder__feature_name_combiner | concat |
preprocessor__categorical_pipeline__encoder__handle_unknown | infrequent_if_exist |
preprocessor__categorical_pipeline__encoder__max_categories | |
preprocessor__categorical_pipeline__encoder__min_frequency | |
preprocessor__categorical_pipeline__encoder__sparse_output | False |
preprocessor__feature_creation_pipeline__memory | |
preprocessor__feature_creation_pipeline__steps | [('feature_creation', FunctionTransformer(func=<function feature_creation at 0x000001E7F14514E0>)), ('imputer', SimpleImputer(strategy='most_frequent')), ('encoder', OneHotEncoder(drop='first', handle_unknown='infrequent_if_exist', sparse_output=False))] |
preprocessor__feature_creation_pipeline__verbose | False |
preprocessor__feature_creation_pipeline__feature_creation | FunctionTransformer(func=<function feature_creation at 0x000001E7F14514E0>) |
preprocessor__feature_creation_pipeline__imputer | SimpleImputer(strategy='most_frequent') |
preprocessor__feature_creation_pipeline__encoder | OneHotEncoder(drop='first', handle_unknown='infrequent_if_exist', sparse_output=False) |
preprocessor__feature_creation_pipeline__feature_creation__accept_sparse | False |
preprocessor__feature_creation_pipeline__feature_creation__check_inverse | True |
preprocessor__feature_creation_pipeline__feature_creation__feature_names_out | |
preprocessor__feature_creation_pipeline__feature_creation__func | <function feature_creation at 0x000001E7F14514E0> |
preprocessor__feature_creation_pipeline__feature_creation__inv_kw_args | |
preprocessor__feature_creation_pipeline__feature_creation__inverse_func | |
preprocessor__feature_creation_pipeline__feature_creation__kw_args | |
preprocessor__feature_creation_pipeline__feature_creation__validate | False |
preprocessor__feature_creation_pipeline__imputer__add_indicator | False |
preprocessor__feature_creation_pipeline__imputer__copy | True |
preprocessor__feature_creation_pipeline__imputer__fill_value | |
preprocessor__feature_creation_pipeline__imputer__keep_empty_features | False |
preprocessor__feature_creation_pipeline__imputer__missing_values | nan |
preprocessor__feature_creation_pipeline__imputer__strategy | most_frequent |
preprocessor__feature_creation_pipeline__encoder__categories | auto |
preprocessor__feature_creation_pipeline__encoder__drop | first |
preprocessor__feature_creation_pipeline__encoder__dtype | <class 'numpy.float64'> |
preprocessor__feature_creation_pipeline__encoder__feature_name_combiner | concat |
preprocessor__feature_creation_pipeline__encoder__handle_unknown | infrequent_if_exist |
preprocessor__feature_creation_pipeline__encoder__max_categories | |
preprocessor__feature_creation_pipeline__encoder__min_frequency | |
preprocessor__feature_creation_pipeline__encoder__sparse_output | False |
feature-selection__k | all |
feature-selection__score_func | <function mutual_info_classif at 0x000001E7EDA4E480> |
classifier__bootstrap | True |
classifier__ccp_alpha | 0.0 |
classifier__class_weight | |
classifier__criterion | gini |
classifier__max_depth | |
classifier__max_features | sqrt |
classifier__max_leaf_nodes | |
classifier__max_samples | |
classifier__min_impurity_decrease | 0.0 |
classifier__min_samples_leaf | 1 |
classifier__min_samples_split | 2 |
classifier__min_weight_fraction_leaf | 0.0 |
classifier__monotonic_cst | |
classifier__n_estimators | 100 |
classifier__n_jobs | -1 |
classifier__oob_score | False |
classifier__random_state | 2024 |
classifier__verbose | 0 |
classifier__warm_start | False |
Model Plot
Pipeline(steps=[('preprocessor',ColumnTransformer(transformers=[('numerical_pipeline',Pipeline(steps=[('log_transformations',FunctionTransformer(func=<ufunc 'log1p'>)),('imputer',SimpleImputer(strategy='median')),('scaler',RobustScaler())]),['prg', 'pl', 'pr', 'sk','ts', 'm11', 'bd2', 'age']),('categorical_pipeline',Pipeline(steps=[('as_categorical',Funct...FunctionTransformer(func=<function feature_creation at 0x000001E7F14514E0>)),('imputer',SimpleImputer(strategy='most_frequent')),('encoder',OneHotEncoder(drop='first',handle_unknown='infrequent_if_exist',sparse_output=False))]),['age'])])),('feature-selection',SelectKBest(k='all',score_func=<function mutual_info_classif at 0x000001E7EDA4E480>)),('classifier',RandomForestClassifier(n_jobs=-1, random_state=2024))])In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
Pipeline(steps=[('preprocessor',ColumnTransformer(transformers=[('numerical_pipeline',Pipeline(steps=[('log_transformations',FunctionTransformer(func=<ufunc 'log1p'>)),('imputer',SimpleImputer(strategy='median')),('scaler',RobustScaler())]),['prg', 'pl', 'pr', 'sk','ts', 'm11', 'bd2', 'age']),('categorical_pipeline',Pipeline(steps=[('as_categorical',Funct...FunctionTransformer(func=<function feature_creation at 0x000001E7F14514E0>)),('imputer',SimpleImputer(strategy='most_frequent')),('encoder',OneHotEncoder(drop='first',handle_unknown='infrequent_if_exist',sparse_output=False))]),['age'])])),('feature-selection',SelectKBest(k='all',score_func=<function mutual_info_classif at 0x000001E7EDA4E480>)),('classifier',RandomForestClassifier(n_jobs=-1, random_state=2024))])
ColumnTransformer(transformers=[('numerical_pipeline',Pipeline(steps=[('log_transformations',FunctionTransformer(func=<ufunc 'log1p'>)),('imputer',SimpleImputer(strategy='median')),('scaler', RobustScaler())]),['prg', 'pl', 'pr', 'sk', 'ts', 'm11', 'bd2','age']),('categorical_pipeline',Pipeline(steps=[('as_categorical',FunctionTransformer(func=<function as_...handle_unknown='infrequent_if_exist',sparse_output=False))]),['insurance']),('feature_creation_pipeline',Pipeline(steps=[('feature_creation',FunctionTransformer(func=<function feature_creation at 0x000001E7F14514E0>)),('imputer',SimpleImputer(strategy='most_frequent')),('encoder',OneHotEncoder(drop='first',handle_unknown='infrequent_if_exist',sparse_output=False))]),['age'])])
['prg', 'pl', 'pr', 'sk', 'ts', 'm11', 'bd2', 'age']
FunctionTransformer(func=<ufunc 'log1p'>)
SimpleImputer(strategy='median')
RobustScaler()
['insurance']
FunctionTransformer(func=<function as_category at 0x000001E7F1450680>)
SimpleImputer(strategy='most_frequent')
OneHotEncoder(drop='first', handle_unknown='infrequent_if_exist',sparse_output=False)
['age']
FunctionTransformer(func=<function feature_creation at 0x000001E7F14514E0>)
SimpleImputer(strategy='most_frequent')
OneHotEncoder(drop='first', handle_unknown='infrequent_if_exist',sparse_output=False)
SelectKBest(k='all',score_func=<function mutual_info_classif at 0x000001E7EDA4E480>)
RandomForestClassifier(n_jobs=-1, random_state=2024)
Evaluation Results
[More Information Needed]
How to Get Started with the Model
[More Information Needed]
Model Card Authors
This model card is written by following authors:
[More Information Needed]
Model Card Contact
You can contact the model card authors through following channels: [More Information Needed]
Citation
Below you can find information related to citation.
BibTeX:
[More Information Needed]
citation_bibtex
bibtex @inproceedings{...,year={2024}}
get_started_code
import joblib clf = joblib.load(../models/RandomForestClassifier.joblib)
model_card_authors
Gabriel Okundaye
limitations
This model needs further feature engineering to improve the f1 weighted score. Collaborate on with me here GitHub
model_description
This is a RandomForestClassifier model trained on Sepsis dataset from this kaggle dataset.