metadata
tags: autotrain
language: es
widget:
- text: I love AutoTrain 🤗
datasets:
- gabitoo1234/autotrain-data-mut_all_text
co2_eq_emissions: 115.48848403681228
Model Trained Using AutoTrain
- Problem type: Multi-class Classification
- Model ID: 680820343
- CO2 Emissions (in grams): 115.48848403681228
Validation Metrics
- Loss: 0.3041240870952606
- Accuracy: 0.9462770369425126
- Macro F1: 0.7836898686625933
- Micro F1: 0.9462770369425126
- Weighted F1: 0.9449148298990091
- Macro Precision: 0.8344505891491089
- Micro Precision: 0.9462770369425126
- Weighted Precision: 0.9451247372908952
- Macro Recall: 0.7568785255994025
- Micro Recall: 0.9462770369425126
- Weighted Recall: 0.9462770369425126
Usage
You can use cURL to access this model:
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/gabitoo1234/autotrain-mut_all_text-680820343
Or Python API:
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model = AutoModelForSequenceClassification.from_pretrained("gabitoo1234/autotrain-mut_all_text-680820343", use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained("gabitoo1234/autotrain-mut_all_text-680820343", use_auth_token=True)
inputs = tokenizer("I love AutoTrain", return_tensors="pt")
outputs = model(**inputs)