Model
This model was obtained by fine-tuning microsoft/deberta-base
on the extended ClaimRev dataset.
Paper: To Revise or Not to Revise: Learning to Detect Improvable Claims for Argumentative Writing Support
Authors: Gabriella Skitalinskaya and Henning Wachsmuth
Claim Improvement Suggestion
We cast this task as a multi-class classification task, where the objective is given an argumentative claim and some contextual information (in this case, the main thesis of the debate), select all types of quality issues from a defined set that should be improved when revising the claim.
Usage
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
tokenizer = AutoTokenizer.from_pretrained("gabski/deberta-claim-improvement-suggestion-with-thesis-context")
model = AutoModelForSequenceClassification.from_pretrained("gabski/deberta-claim-improvement-suggestion-with-thesis-context")
claim = 'Teachers are likely to educate children better than parents.'
thesis = 'Homeschooling should be banned.'
model_input = tokenizer(claim,thesis, return_tensors='pt')
model_outputs = model(**model_input)
outputs = torch.nn.functional.softmax(model_outputs.logits, dim = -1)
print(outputs)
- Downloads last month
- 10
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.