Model

This sentence-transformers model model was obtained by fine-tuning bert-base-cased on the ClaimRev dataset.

Paper: Learning From Revisions: Quality Assessment of Claims in Argumentation at Scale Authors: Gabriella Skitalinskaya, Jonas Klaff, Henning Wachsmuth

Claim Quality Classification

We cast this task as a pairwise classification task, where the objective is to compare two versions of the same claim and determine which one is better. We train this model by fine-tuning SBERT based on bert-base-cased using a siamese network structure with softmax loss. Outputs can also be used to rank multiple versions of the same claim, for example, using SVMRank or BTL (Bradley-Terry-Luce model).

Usage (Sentence-Transformers)

Using this model becomes easy when you have sentence-transformers installed:

pip install -U sentence-transformers

Then you can use the model like this:

from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]

model = SentenceTransformer('gabski/sbert-relative-claim-quality')
embeddings = model.encode(sentences)
print(embeddings)

Usage (HuggingFace Transformers)

Without sentence-transformers, you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.

from transformers import AutoTokenizer, AutoModel
import torch


#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
    token_embeddings = model_output[0] #First element of model_output contains all token embeddings
    input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
    return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)


# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']

# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('gabski/sbert-relative-claim-quality')
model = AutoModel.from_pretrained('gabski/sbert-relative-claim-quality')

# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')

# Compute token embeddings
with torch.no_grad():
    model_output = model(**encoded_input)

# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])

print("Sentence embeddings:")
print(sentence_embeddings)

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)

Citing & Authors

@inproceedings{skitalinskaya-etal-2021-learning,
    title = "Learning From Revisions: Quality Assessment of Claims in Argumentation at Scale",
    author = "Skitalinskaya, Gabriella  and
      Klaff, Jonas  and
      Wachsmuth, Henning",
    booktitle = "Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume",
    month = apr,
    year = "2021",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2021.eacl-main.147",
    doi = "10.18653/v1/2021.eacl-main.147",
    pages = "1718--1729",
}
Downloads last month
1
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.