Text Generation
Transformers
Safetensors
mixtral
Mixture of Experts
openchat/openchat-3.5-0106
giux78/zefiro-7b-beta-ITA-v0.1
azale-ai/Starstreak-7b-beta
gagan3012/Mistral_arabic_dpo
davidkim205/komt-mistral-7b-v1
OpenBuddy/openbuddy-zephyr-7b-v14.1
manishiitg/open-aditi-hi-v1
VAGOsolutions/SauerkrautLM-7b-v1-mistral
conversational
Eval Results
text-generation-inference
Inference Endpoints
Multilingual-mistral
This model is a Mixure of Experts (MoE) made with mergekit (mixtral branch). It uses the following base models:
- openchat/openchat-3.5-0106
- giux78/zefiro-7b-beta-ITA-v0.1
- azale-ai/Starstreak-7b-beta
- gagan3012/Mistral_arabic_dpo
- davidkim205/komt-mistral-7b-v1
- OpenBuddy/openbuddy-zephyr-7b-v14.1
- manishiitg/open-aditi-hi-v1
- VAGOsolutions/SauerkrautLM-7b-v1-mistral
🧩 Configuration
dtype: bfloat16
experts:
- positive_prompts:
- chat
- assistant
- tell me
- explain
source_model: openchat/openchat-3.5-0106
- positive_prompts:
- chat
- assistant
- tell me
- explain
source_model: giux78/zefiro-7b-beta-ITA-v0.1
- positive_prompts:
- indonesian
- indonesia
- answer in indonesian
source_model: azale-ai/Starstreak-7b-beta
- positive_prompts:
- arabic
- arab
- arabia
- answer in arabic
source_model: gagan3012/Mistral_arabic_dpo
- positive_prompts:
- korean
- answer in korean
- korea
source_model: davidkim205/komt-mistral-7b-v1
- positive_prompts:
- chinese
- china
- answer in chinese
source_model: OpenBuddy/openbuddy-zephyr-7b-v14.1
- positive_prompts:
- hindi
- india
- hindu
- answer in hindi
source_model: manishiitg/open-aditi-hi-v1
- positive_prompts:
- german
- germany
- answer in german
- deutsch
source_model: VAGOsolutions/SauerkrautLM-7b-v1-mistral
gate_mode: hidden
💻 Usage
!pip install -qU transformers bitsandbytes accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "gagan3012/Multilingual-mistral"
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
"text-generation",
model=model,
model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
)
messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 62.79 |
AI2 Reasoning Challenge (25-Shot) | 62.29 |
HellaSwag (10-Shot) | 81.76 |
MMLU (5-Shot) | 61.38 |
TruthfulQA (0-shot) | 55.53 |
Winogrande (5-shot) | 75.53 |
GSM8k (5-shot) | 40.26 |
- Downloads last month
- 1,238
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for gagan3012/Multilingual-mistral
Evaluation results
- normalized accuracy on AI2 Reasoning Challenge (25-Shot)test set Open LLM Leaderboard62.290
- normalized accuracy on HellaSwag (10-Shot)validation set Open LLM Leaderboard81.760
- accuracy on MMLU (5-Shot)test set Open LLM Leaderboard61.380
- mc2 on TruthfulQA (0-shot)validation set Open LLM Leaderboard55.530
- accuracy on Winogrande (5-shot)validation set Open LLM Leaderboard75.530
- accuracy on GSM8k (5-shot)test set Open LLM Leaderboard40.260