YAML Metadata
Error:
"language" must only contain lowercase characters
YAML Metadata
Error:
"language" with value "pa-IN" is not valid. It must be an ISO 639-1, 639-2 or 639-3 code (two/three letters), or a special value like "code", "multilingual". If you want to use BCP-47 identifiers, you can specify them in language_bcp47.
Wav2Vec2-Large-XLSR-53-Punjabi
Fine-tuned facebook/wav2vec2-large-xlsr-53 on Punjabi using the Common Voice
When using this model, make sure that your speech input is sampled at 16kHz.
Usage
The model can be used directly (without a language model) as follows:
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "pa-IN", split="test")
processor = Wav2Vec2Processor.from_pretrained("gagan3012/wav2vec2-xlsr-punjabi")
model = Wav2Vec2ForCTC.from_pretrained("gagan3012/wav2vec2-xlsr-punjabi")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
\\\\tspeech_array, sampling_rate = torchaudio.load(batch["path"])
\\\\tbatch["speech"] = resampler(speech_array).squeeze().numpy()
\\\\treturn batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
\\\\tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
Results:
Prediction: ['ਹਵਾ ਲਾਤ ਵਿੱਚ ਪੰਦ ਛੇ ਇਖਲਾਟਕੀ ਮੁਜਰਮ ਸਨ', 'ਮੈ ਇ ਹਾ ਪੈਸੇ ਲੇਹੜ ਨਹੀਂ ਸੀ ਚੌਨਾ']
Reference: ['ਹਵਾਲਾਤ ਵਿੱਚ ਪੰਜ ਛੇ ਇਖ਼ਲਾਕੀ ਮੁਜਰਮ ਸਨ', 'ਮੈਂ ਇਹ ਪੈਸੇ ਲੈਣੇ ਨਹੀਂ ਸੀ ਚਾਹੁੰਦਾ']
Evaluation
The model can be evaluated as follows on the {language} test data of Common Voice. # TODO: replace #TODO: replace language with your {language}, e.g. French
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
test_dataset = load_dataset("common_voice", "pa-IN", split="test") #TODO: replace {lang_id} in your language code here. Make sure the code is one of the *ISO codes* of [this](https://huggingface.co/languages) site.
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("gagan3012/wav2vec2-xlsr-punjabi")
model = Wav2Vec2ForCTC.from_pretrained("gagan3012/wav2vec2-xlsr-punjabi")
model.to("cuda")
chars_to_ignore_regex = '[\\\\\\\\\\\\\\\\,\\\\\\\\\\\\\\\\?\\\\\\\\\\\\\\\\.\\\\\\\\\\\\\\\\!\\\\\\\\\\\\\\\\-\\\\\\\\\\\\\\\\;\\\\\\\\\\\\\\\\:\\\\\\\\\\\\\\\\"\\\\\\\\\\\\\\\\“]' # TODO: adapt this list to include all special characters you removed from the data
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
\\\\\\\\tbatch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
\\\\\\\\tspeech_array, sampling_rate = torchaudio.load(batch["path"])
\\\\\\\\tbatch["speech"] = resampler(speech_array).squeeze().numpy()
\\\\\\\\treturn batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def evaluate(batch):
\\\\\\\\tinputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
\\\\\\\\twith torch.no_grad():
\\\\\\\\t\\\\\\\\tlogits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
\\\\\\\\tpred_ids = torch.argmax(logits, dim=-1)
\\\\\\\\tbatch["pred_strings"] = processor.batch_decode(pred_ids)
\\\\\\\\treturn batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
Test Result: 58.05 %
Training
The script used for training can be found here
- Downloads last month
- 2,190
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.