galelka's picture
End of training
a567e78 verified
metadata
library_name: transformers
language:
  - he
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_11_0
metrics:
  - wer
model-index:
  - name: Whisper Small Hi - Sanchit Gandhi
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 11.0
          type: mozilla-foundation/common_voice_11_0
          args: 'config: hi, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 30.46731826511912

Whisper Small Hi - Sanchit Gandhi

This model is a fine-tuned version of openai/whisper-small on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5304
  • Wer: 30.4673

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.3345 1.7778 500 0.4103 43.8302
0.1379 3.5556 1000 0.4276 37.6756
0.0612 5.3333 1500 0.4672 32.8039
0.0234 7.1111 2000 0.4806 32.9948
0.0167 8.8889 2500 0.4829 31.0247
0.0074 10.6667 3000 0.5092 34.4762
0.0023 12.4444 3500 0.5247 29.9786
0.0008 14.2222 4000 0.5304 30.4673

Framework versions

  • Transformers 4.45.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.20.1