gamzadole's picture
REAME ์ž‘์„ฑ
aafcce4
---
base_model: beomi/Llama-3-Open-Ko-8B
library_name: peft
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
Base Model : "beomi/Llama-3-Open-Ko-8B"
Dataset : "Bingsu/ko_alpaca_data"
LORA๋ฅผ ์‚ฌ์šฉํ•ด ํŒŒ์ธํŠœ๋‹ํ•œ ๋ชจ๋ธ์ž…๋‹ˆ๋‹ค. ํ•˜๋“œ์›จ์–ด ๋ฉ”๋ชจ๋ฆฌ๊ฐ€ ๋ถ€์กฑํ•˜์—ฌ alpaca dataset์˜ ์ƒ์œ„ 10๊ฐœ์˜ ๋ฐ์ดํ„ฐ๋งŒ ๊ฐ€์ง€๊ณ  ํ•™์Šต์„ ์ง„ํ–‰ํ•˜์˜€์Šต๋‹ˆ๋‹ค.
## Model Details
ํ•ด๋‹น ๋ชจ๋ธ์„ ์‚ฌ์šฉํ•ด๋ณด๊ธฐ ์œ„ํ•ด์„  basemodel์˜ tokenizer์™€ ํŠน์ • instruction template์„ ์ง€์ผœ์•ผ ์ œ๋Œ€๋กœ ๋œ ๊ฒฐ๊ณผ๊ฐ€ ์ถœ๋ ฅ๋ฉ๋‹ˆ๋‹ค.
```python
from peft import PeftModel, PeftConfig
from transformers import AutoModelForCausalLM, AutoTokenizer
BASEMODEL = "beomi/Llama-3-Open-Ko-8B"
config = PeftConfig.from_pretrained("gamzadole/llama3_Alpaca_Finetune")
base_model = AutoModelForCausalLM.from_pretrained("beomi/Llama-3-Open-Ko-8B", load_in_4bit=True, device_map="auto")
model = PeftModel.from_pretrained(base_model, "gamzadole/llama3_Alpaca_Finetune")
model = model.cuda()
tokenizer = AutoTokenizer.from_pretrained(BASEMODEL)
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = "right"
prompt_input_template = """์•„๋ž˜๋Š” ์ž‘์—…์„ ์„ค๋ช…ํ•˜๋Š” ์ง€์‹œ์‚ฌํ•ญ๊ณผ ์ถ”๊ฐ€ ์ •๋ณด๋ฅผ ์ œ๊ณตํ•˜๋Š” ์ž…๋ ฅ์ด ์ง์œผ๋กœ ๊ตฌ์„ฑ๋ฉ๋‹ˆ๋‹ค. ์ด์— ๋Œ€ํ•œ ์ ์ ˆํ•œ ์‘๋‹ต์„ ์ž‘์„ฑํ•ด์ฃผ์„ธ์š”.
### ์ง€์‹œ์‚ฌํ•ญ:
{instruction}
### ์ž…๋ ฅ:
{input}
### ์‘๋‹ต:"""
prompt_no_input_template = """์•„๋ž˜๋Š” ์ž‘์—…์„ ์„ค๋ช…ํ•˜๋Š” ์ง€์‹œ์‚ฌํ•ญ์ž…๋‹ˆ๋‹ค. ์ด์— ๋Œ€ํ•œ ์ ์ ˆํ•œ ์‘๋‹ต์„ ์ž‘์„ฑํ•ด์ฃผ์„ธ์š”.
### ์ง€์‹œ์‚ฌํ•ญ:
{instruction}
### ์‘๋‹ต:"""
def generate_response(prompt, model):
encoded_input = tokenizer(prompt, return_tensors="pt", add_special_tokens=True)
model_inputs = encoded_input.to('cuda')
generated_ids = model.generate(**model_inputs, max_new_tokens=512, do_sample=True, pad_token_id=tokenizer.eos_token_id)
decoded_output = tokenizer.batch_decode(generated_ids)
return decoded_output[0].replace(prompt, "")
instruction = "๊ฑด๊ฐ•์„ ์œ ์ง€ํ•˜๊ธฐ ์œ„ํ•œ ์„ธ ๊ฐ€์ง€ ํŒ์„ ์•Œ๋ ค์ฃผ์„ธ์š”."
prompt = prompt_no_input_template.format(instruction=instruction)
generate_response(prompt, model)
```
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.11.1