metadata
language:
- en
license: other
tags:
- llama
metrics:
- MMLU
- ARC
- HellaSwag
- TruthfulQA
model-index:
- name: SuperPlatty-30B
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 65.78
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ariellee/SuperPlatty-30B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 83.95
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ariellee/SuperPlatty-30B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 62.57
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ariellee/SuperPlatty-30B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 53.52
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ariellee/SuperPlatty-30B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 80.35
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ariellee/SuperPlatty-30B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 9.63
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ariellee/SuperPlatty-30B
name: Open LLM Leaderboard
Information
SuperPlatty-30B is a merge of garage-bAInd/Platypus-30B and kaiokendev/SuperCOT-LoRA
Model Details
- Trained by: Platypus-30B trained by Cole Hunter & Ariel Lee; SuperCOT-LoRA trained by kaiokendev.
- Model type: SuperPlatty-30B is an auto-regressive language model based on the LLaMA transformer architecture.
- Language(s): English
- License for base weights: License for the base LLaMA model's weights is Meta's non-commercial bespoke license.
Hyperparameter | Value |
---|---|
33B | |
6656 | |
60 | |
52 |
Reproducing Evaluation Results
Install LM Evaluation Harness:
git clone https://github.com/EleutherAI/lm-evaluation-harness
cd lm-evaluation-harness
pip install -e .
Each task was evaluated on a single A100 80GB GPU.
ARC:
python main.py --model hf-causal-experimental --model_args pretrained=garage-bAIdnd/SuperPlatty-30B --tasks arc_challenge --batch_size 1 --no_cache --write_out --output_path results/SuperPlatty-30B/arc_challenge_25shot.json --device cuda --num_fewshot 25
HellaSwag:
python main.py --model hf-causal-experimental --model_args pretrained=garage-bAIdnd/SuperPlatty-30B --tasks hellaswag --batch_size 1 --no_cache --write_out --output_path results/SuperPlatty-30B/hellaswag_10shot.json --device cuda --num_fewshot 10
MMLU:
python main.py --model hf-causal-experimental --model_args pretrained=garage-bAIdnd/SuperPlatty-30B --tasks hendrycksTest-* --batch_size 1 --no_cache --write_out --output_path results/SuperPlatty-30B/mmlu_5shot.json --device cuda --num_fewshot 5
TruthfulQA:
python main.py --model hf-causal-experimental --model_args pretrained=garage-bAIdnd/SuperPlatty-30B --tasks truthfulqa_mc --batch_size 1 --no_cache --write_out --output_path results/SuperPlatty-30B/truthfulqa_0shot.json --device cuda
Limitations and bias
The base LLaMA model is trained on various data, some of which may contain offensive, harmful, and biased content that can lead to toxic behavior. See Section 5.1 of the LLaMA paper. We have not performed any studies to determine how fine-tuning on the aforementioned datasets affect the model's behavior and toxicity. Do not treat chat responses from this model as a substitute for human judgment or as a source of truth. Please use responsibly.
Citations
@article{touvron2023llama,
title={LLaMA: Open and Efficient Foundation Language Models},
author={Touvron, Hugo and Lavril, Thibaut and Izacard, Gautier and Martinet, Xavier and Lachaux, Marie-Anne and Lacroix, Timoth{\'e}e and Rozi{\`e}re, Baptiste and Goyal, Naman and Hambro, Eric and Azhar, Faisal and Rodriguez, Aurelien and Joulin, Armand and Grave, Edouard and Lample, Guillaume},
journal={arXiv preprint arXiv:2302.13971},
year={2023}
}
@article{hu2021lora,
title={LoRA: Low-Rank Adaptation of Large Language Models},
author={Hu, Edward J. and Shen, Yelong and Wallis, Phillip and Allen-Zhu, Zeyuan and Li, Yuanzhi and Wang, Shean and Chen, Weizhu},
journal={CoRR},
year={2021}
}
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 57.89 |
ARC (25-shot) | 65.78 |
HellaSwag (10-shot) | 83.95 |
MMLU (5-shot) | 62.57 |
TruthfulQA (0-shot) | 53.52 |
Winogrande (5-shot) | 80.35 |
GSM8K (5-shot) | 9.63 |
DROP (3-shot) | 49.44 |
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 59.30 |
AI2 Reasoning Challenge (25-Shot) | 65.78 |
HellaSwag (10-Shot) | 83.95 |
MMLU (5-Shot) | 62.57 |
TruthfulQA (0-shot) | 53.52 |
Winogrande (5-shot) | 80.35 |
GSM8k (5-shot) | 9.63 |