|
|
|
--- |
|
tags: |
|
- ctranslate2 |
|
- translation |
|
license: apache-2.0 |
|
--- |
|
# Repository General Information |
|
## Inspired by and derived from the work of [Helsinki-NLP](https://huggingface.co/Helsinki-NLP), [CTranslate2](https://github.com/OpenNMT/CTranslate2), and [michaelfeil](https://huggingface.co/michaelfeil)! |
|
- Link to Original Model ([Helsinki-NLP](https://huggingface.co/Helsinki-NLP)): [Model Link](https://huggingface.co/Helsinki-NLP/opus-mt-es-loz) |
|
- This respository was based on the work of [CTranslate2](https://github.com/OpenNMT/CTranslate2). |
|
- This repository was based on the work of [michaelfeil](https://huggingface.co/michaelfeil). |
|
|
|
# What is CTranslate2? |
|
[CTranslate2](https://opennmt.net/CTranslate2/) is a C++ and Python library for efficient inference with Transformer models. |
|
|
|
CTranslate2 implements a custom runtime that applies many performance optimization techniques such as weights quantization, layers fusion, batch reordering, etc., to accelerate and reduce the memory usage of Transformer models on CPU and GPU. |
|
|
|
CTranslate2 is SOTA and is one of the most performant ways of hosting translation models at scale. Current supported models include: |
|
- Encoder-decoder models: Transformer base/big, M2M-100, NLLB, BART, mBART, Pegasus, T5, Whisper |
|
- Decoder-only models: GPT-2, GPT-J, GPT-NeoX, OPT, BLOOM, MPT, Llama, Mistral, Gemma, CodeGen, GPTBigCode, Falcon |
|
- Encoder-only models: BERT, DistilBERT, XLM-RoBERTa |
|
|
|
Speed up inference times by about **2x-8x** using **int8** inference in C++. CTranslate2 is SOTA for hosting translation models at scale. |
|
# CTranslate2 Benchmarks |
|
Please note that the results presented below are only valid for the configuration used during this benchmark: absolute and relative performance may change with different settings. Tested against `newstest2014` (En -> De) dataset. |
|
|
|
The benchmark reports the number of target tokens generated per second (higher is better). The results are aggregated over multiple runs. See the benchmark scripts for more details and reproduce these numbers. |
|
|
|
Please note that the results presented below are only valid for the configuration used during this benchmark: absolute and relative performance may change with different settings. |
|
|
|
## CPU Benchmarks for Generic Opus-MT Models |
|
| Library | Tokens per Second | Max Memory Usage | BLEU | |
|
| :----: | :----: | :----: | :----: | |
|
| Transformers 4.26.1 (with PyTorch 1.13.1) | 147.3 | 2332MB | 27.90 | |
|
| Marian 1.11.0 (int16) | 330.2 | 5901MB | 27.65 | |
|
| Marian 1.11.0 (int8) | 355.8 | 4763MB | 27.27 | |
|
| CTranslate2 3.6.0 (int16) | 596.1 | 660MB | 27.53 | |
|
| CTranslate2 3.6.0 (int8) | 696.1 | 516MB | 27.65 | |
|
|
|
## GPU Benchmarks for Generic Opus-MT Models |
|
| Library | Tokens per Second | Max GPU Memory Usage | Max Memory Usage | BLEU | |
|
| :----: | :----: | :----: | :----: | :----: | |
|
| Transformers 4.26.1 (with PyTorch 1.13.1) | 1022.9 | 4097MB | 2109MB | 27.90 | |
|
| Marian 1.11.0 (float16) | 3962.4 | 3239MB | 1976MB | 27.94 | |
|
| CTranslate2 3.6.0 (float16) | 9296.7 | 909MB | 814MB | 27.9 | |
|
| CTranslate2 3.6.0 (int8 + float16) | 8362.7 | 813MB | 766MB | 27.9 | |
|
|
|
`Executed with 4 threads on a c5.2xlarge Amazon EC2 instance equipped with an Intel(R) Xeon(R) Platinum 8275CL CPU.` |
|
|
|
**Source to benchmark information can be found [here](https://github.com/OpenNMT/CTranslate2).**<br /> |
|
**Original model BLEU scores can be found [here](https://huggingface.co/Helsinki-NLP/opus-mt-es-loz).** |
|
|
|
# CTranslate2 Installation |
|
```bash |
|
pip install hf-hub-ctranslate2>=1.0.0 ctranslate2>=3.13.0 |
|
``` |
|
### ct2-transformers-converter Command Used: |
|
``` |
|
ct2-transformers-converter --model Helsinki-NLP/opus-mt-es-loz --output_dir ./ctranslate2/opus-mt-es-loz-ctranslate2 --force --copy_files README.md generation_config.json tokenizer_config.json vocab.json source.spm .gitattributes target.spm --quantization float16 |
|
``` |
|
# CTranslate2 Converted Checkpoint Information: |
|
**Compatible With:** |
|
- [ctranslate2](https://github.com/OpenNMT/CTranslate2) |
|
- [hf-hub-ctranslate2](https://github.com/michaelfeil/hf-hub-ctranslate2) |
|
|
|
**Compute Type:** |
|
- `compute_type=int8_float16` for `device="cuda"` |
|
- `compute_type=int8` for `device="cpu"` |
|
|
|
# Sample Code - ctranslate2 |
|
```python |
|
from ctranslate2 import Translator |
|
import transformers |
|
|
|
model_name = "gaudi/opus-mt-es-loz-ctranslate2" |
|
translator = Translator( |
|
model_path=model_name, |
|
device="cuda", |
|
inter_threads=1, |
|
intra_threads=4, |
|
compute_type="int8_float16", |
|
) |
|
|
|
tokenizer = transformers.AutoTokenizer.from_pretrained(model_name) |
|
|
|
source = tokenizer.convert_ids_to_tokens(tokenizer.encode("XXXXXX, XXX XX XXXXXX.")) |
|
results = translator.translate_batch([source]) |
|
target = results[0].hypotheses[0] |
|
|
|
print(tokenizer.decode(tokenizer.convert_tokens_to_ids(target))) |
|
``` |
|
# Sample Code - hf-hub-ctranslate2 |
|
**Derived From [michaelfeil](https://huggingface.co/michaelfeil):** |
|
```python |
|
from hf_hub_ctranslate2 import TranslatorCT2fromHfHub, GeneratorCT2fromHfHub |
|
from transformers import AutoTokenizer |
|
|
|
model_name = "gaudi/opus-mt-es-loz-ctranslate2" |
|
model = TranslatorCT2fromHfHub( |
|
model_name_or_path=model_name, |
|
device="cuda", |
|
compute_type="int8_float16" # load in int8 on CUDA, |
|
tokenizer=AutoTokenizer.from_pretrained(model_name) |
|
) |
|
outputs = model.generate( |
|
text=["XXX XX XXX XXXXXXX XXXX?", "XX XX XXXX XX XXX!"], |
|
) |
|
print(outputs) |
|
``` |
|
# License and other remarks: |
|
License conditions are intended to be idential to [original huggingface repository](https://huggingface.co/Helsinki-NLP/opus-mt-es-loz) by Helsinki-NLP. |
|
|