SentenceTransformer based on google-bert/bert-base-uncased
This is a sentence-transformers model finetuned from google-bert/bert-base-uncased. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: google-bert/bert-base-uncased
- Maximum Sequence Length: 128 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("gavinqiangli/my-awesome-bi-encoder")
# Run inference
sentences = [
"How can the drive from Edmonton to Auckland be described, and how do these cities' attractions compare to those in Vancouver?",
'How can the drive from Edmonton to Auckland be described, and how does the history of these cities compare and contrast to the history of Vancouver?',
'Which optional subjects can I choose for the IAS exam?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Binary Classification
- Evaluated with
BinaryClassificationEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.7644 |
cosine_accuracy_threshold | 0.8147 |
cosine_f1 | 0.6959 |
cosine_f1_threshold | 0.7402 |
cosine_precision | 0.5946 |
cosine_recall | 0.839 |
cosine_ap | 0.7113 |
dot_accuracy | 0.74 |
dot_accuracy_threshold | 153.501 |
dot_f1 | 0.6711 |
dot_f1_threshold | 133.2327 |
dot_precision | 0.5683 |
dot_recall | 0.8192 |
dot_ap | 0.6542 |
manhattan_accuracy | 0.7665 |
manhattan_accuracy_threshold | 176.4289 |
manhattan_f1 | 0.6973 |
manhattan_f1_threshold | 218.9676 |
manhattan_precision | 0.59 |
manhattan_recall | 0.8522 |
manhattan_ap | 0.7109 |
euclidean_accuracy | 0.7665 |
euclidean_accuracy_threshold | 8.0922 |
euclidean_f1 | 0.697 |
euclidean_f1_threshold | 9.7942 |
euclidean_precision | 0.5946 |
euclidean_recall | 0.8421 |
euclidean_ap | 0.7109 |
max_accuracy | 0.7665 |
max_accuracy_threshold | 176.4289 |
max_f1 | 0.6973 |
max_f1_threshold | 218.9676 |
max_precision | 0.5946 |
max_recall | 0.8522 |
max_ap | 0.7113 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 103,663 training samples
- Columns:
sentence_0
,sentence_1
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 label type string string int details - min: 6 tokens
- mean: 13.82 tokens
- max: 41 tokens
- min: 5 tokens
- mean: 13.87 tokens
- max: 44 tokens
- 0: ~4.80%
- 1: ~95.20%
- Samples:
sentence_0 sentence_1 label Are Jewish people the most intelligent in the universe?
Why are Jewish people so intelligent?
1
How do I become a good lawyer? What are the qualities of a good lawyer?
How can someone become a successful lawyer?
1
Why is China going to the Moon?
What does China want with the moon?
1
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16num_train_epochs
: 1multi_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseeval_use_gather_object
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Epoch | Step | Training Loss | max_ap |
---|---|---|---|
0.0772 | 500 | 0.0796 | - |
0.1543 | 1000 | 0.0205 | 0.6878 |
0.2315 | 1500 | 0.0197 | - |
0.3087 | 2000 | 0.0201 | 0.6864 |
0.3859 | 2500 | 0.0185 | - |
0.4630 | 3000 | 0.0161 | 0.6933 |
0.5402 | 3500 | 0.0163 | - |
0.6174 | 4000 | 0.0172 | 0.7089 |
0.6946 | 4500 | 0.0172 | - |
0.7717 | 5000 | 0.0143 | 0.7072 |
0.8489 | 5500 | 0.0129 | - |
0.9261 | 6000 | 0.0124 | 0.7112 |
1.0 | 6479 | - | 0.7113 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.2.1
- Transformers: 4.44.2
- PyTorch: 2.5.0+cu121
- Accelerate: 0.34.2
- Datasets: 3.1.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 4
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for gavinqiangli/my-awesome-bi-encoder
Base model
google-bert/bert-base-uncasedEvaluation results
- Cosine Accuracy on Unknownself-reported0.764
- Cosine Accuracy Threshold on Unknownself-reported0.815
- Cosine F1 on Unknownself-reported0.696
- Cosine F1 Threshold on Unknownself-reported0.740
- Cosine Precision on Unknownself-reported0.595
- Cosine Recall on Unknownself-reported0.839
- Cosine Ap on Unknownself-reported0.711
- Dot Accuracy on Unknownself-reported0.740
- Dot Accuracy Threshold on Unknownself-reported153.501
- Dot F1 on Unknownself-reported0.671