gavinqiangli commited on
Commit
d3fd1f2
1 Parent(s): bc58d2d

Add new SentenceTransformer model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,566 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: google-bert/bert-base-uncased
3
+ library_name: sentence-transformers
4
+ metrics:
5
+ - cosine_accuracy
6
+ - cosine_accuracy_threshold
7
+ - cosine_f1
8
+ - cosine_f1_threshold
9
+ - cosine_precision
10
+ - cosine_recall
11
+ - cosine_ap
12
+ - dot_accuracy
13
+ - dot_accuracy_threshold
14
+ - dot_f1
15
+ - dot_f1_threshold
16
+ - dot_precision
17
+ - dot_recall
18
+ - dot_ap
19
+ - manhattan_accuracy
20
+ - manhattan_accuracy_threshold
21
+ - manhattan_f1
22
+ - manhattan_f1_threshold
23
+ - manhattan_precision
24
+ - manhattan_recall
25
+ - manhattan_ap
26
+ - euclidean_accuracy
27
+ - euclidean_accuracy_threshold
28
+ - euclidean_f1
29
+ - euclidean_f1_threshold
30
+ - euclidean_precision
31
+ - euclidean_recall
32
+ - euclidean_ap
33
+ - max_accuracy
34
+ - max_accuracy_threshold
35
+ - max_f1
36
+ - max_f1_threshold
37
+ - max_precision
38
+ - max_recall
39
+ - max_ap
40
+ pipeline_tag: sentence-similarity
41
+ tags:
42
+ - sentence-transformers
43
+ - sentence-similarity
44
+ - feature-extraction
45
+ - generated_from_trainer
46
+ - dataset_size:103663
47
+ - loss:MultipleNegativesRankingLoss
48
+ widget:
49
+ - source_sentence: How much native Icelandic and advanced Icelandic learners can read
50
+ and understand Old Norse?
51
+ sentences:
52
+ - What are the best answers for "Why should I hire you?"in a cool way?
53
+ - Are girls shy in expressing their feelings?
54
+ - If I learn Icelandic can I understand old norse texts?
55
+ - source_sentence: Where can I get quality assistance for budget conveyancing across
56
+ the Sydney?
57
+ sentences:
58
+ - What are the possible options for India to deal with Uri terror attack?
59
+ - What is the intended purpose of philosophy?
60
+ - Where can I get quality assistance in Sydney for any property transaction?
61
+ - source_sentence: What are some of the best IAS coaching institutions in Mumbai?
62
+ sentences:
63
+ - What are best IAS coaching institutes in Mumbai?
64
+ - Do vampires really exist?
65
+ - What do most women feel during sex?
66
+ - source_sentence: Is petroleum engineering still a good major?
67
+ sentences:
68
+ - What are some of the best sex stories?
69
+ - Can I clear CAT in 4.5 months?
70
+ - What is the future of petroleum engineering graduating in 2020?
71
+ - source_sentence: How can the drive from Edmonton to Auckland be described, and how
72
+ do these cities' attractions compare to those in Vancouver?
73
+ sentences:
74
+ - How can the drive from Edmonton to Auckland be described, and how does the history
75
+ of these cities compare and contrast to the history of Vancouver?
76
+ - What are the best hashtags to use as a photographer on instagram?
77
+ - Which optional subjects can I choose for the IAS exam?
78
+ model-index:
79
+ - name: SentenceTransformer based on google-bert/bert-base-uncased
80
+ results:
81
+ - task:
82
+ type: binary-classification
83
+ name: Binary Classification
84
+ dataset:
85
+ name: Unknown
86
+ type: unknown
87
+ metrics:
88
+ - type: cosine_accuracy
89
+ value: 0.7643828947012523
90
+ name: Cosine Accuracy
91
+ - type: cosine_accuracy_threshold
92
+ value: 0.8147265911102295
93
+ name: Cosine Accuracy Threshold
94
+ - type: cosine_f1
95
+ value: 0.6959193470955354
96
+ name: Cosine F1
97
+ - type: cosine_f1_threshold
98
+ value: 0.7402496337890625
99
+ name: Cosine F1 Threshold
100
+ - type: cosine_precision
101
+ value: 0.5945532101060921
102
+ name: Cosine Precision
103
+ - type: cosine_recall
104
+ value: 0.838953622964735
105
+ name: Cosine Recall
106
+ - type: cosine_ap
107
+ value: 0.7112611713824615
108
+ name: Cosine Ap
109
+ - type: dot_accuracy
110
+ value: 0.7399583457304374
111
+ name: Dot Accuracy
112
+ - type: dot_accuracy_threshold
113
+ value: 153.5009765625
114
+ name: Dot Accuracy Threshold
115
+ - type: dot_f1
116
+ value: 0.6710917251406536
117
+ name: Dot F1
118
+ - type: dot_f1_threshold
119
+ value: 133.23265075683594
120
+ name: Dot F1 Threshold
121
+ - type: dot_precision
122
+ value: 0.5683387761657477
123
+ name: Dot Precision
124
+ - type: dot_recall
125
+ value: 0.8191990122694652
126
+ name: Dot Recall
127
+ - type: dot_ap
128
+ value: 0.6542447011722929
129
+ name: Dot Ap
130
+ - type: manhattan_accuracy
131
+ value: 0.7665197046333613
132
+ name: Manhattan Accuracy
133
+ - type: manhattan_accuracy_threshold
134
+ value: 176.4288787841797
135
+ name: Manhattan Accuracy Threshold
136
+ - type: manhattan_f1
137
+ value: 0.6972882533068157
138
+ name: Manhattan F1
139
+ - type: manhattan_f1_threshold
140
+ value: 218.96762084960938
141
+ name: Manhattan F1 Threshold
142
+ - type: manhattan_precision
143
+ value: 0.590020301314243
144
+ name: Manhattan Precision
145
+ - type: manhattan_recall
146
+ value: 0.8522262520256193
147
+ name: Manhattan Recall
148
+ - type: manhattan_ap
149
+ value: 0.7109056366977289
150
+ name: Manhattan Ap
151
+ - type: euclidean_accuracy
152
+ value: 0.7665197046333613
153
+ name: Euclidean Accuracy
154
+ - type: euclidean_accuracy_threshold
155
+ value: 8.092199325561523
156
+ name: Euclidean Accuracy Threshold
157
+ - type: euclidean_f1
158
+ value: 0.6970045347129081
159
+ name: Euclidean F1
160
+ - type: euclidean_f1_threshold
161
+ value: 9.794208526611328
162
+ name: Euclidean F1 Threshold
163
+ - type: euclidean_precision
164
+ value: 0.5945518932171071
165
+ name: Euclidean Precision
166
+ - type: euclidean_recall
167
+ value: 0.8421174473338993
168
+ name: Euclidean Recall
169
+ - type: euclidean_ap
170
+ value: 0.7109417385930392
171
+ name: Euclidean Ap
172
+ - type: max_accuracy
173
+ value: 0.7665197046333613
174
+ name: Max Accuracy
175
+ - type: max_accuracy_threshold
176
+ value: 176.4288787841797
177
+ name: Max Accuracy Threshold
178
+ - type: max_f1
179
+ value: 0.6972882533068157
180
+ name: Max F1
181
+ - type: max_f1_threshold
182
+ value: 218.96762084960938
183
+ name: Max F1 Threshold
184
+ - type: max_precision
185
+ value: 0.5945532101060921
186
+ name: Max Precision
187
+ - type: max_recall
188
+ value: 0.8522262520256193
189
+ name: Max Recall
190
+ - type: max_ap
191
+ value: 0.7112611713824615
192
+ name: Max Ap
193
+ ---
194
+
195
+ # SentenceTransformer based on google-bert/bert-base-uncased
196
+
197
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
198
+
199
+ ## Model Details
200
+
201
+ ### Model Description
202
+ - **Model Type:** Sentence Transformer
203
+ - **Base model:** [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) <!-- at revision 86b5e0934494bd15c9632b12f734a8a67f723594 -->
204
+ - **Maximum Sequence Length:** 128 tokens
205
+ - **Output Dimensionality:** 768 tokens
206
+ - **Similarity Function:** Cosine Similarity
207
+ <!-- - **Training Dataset:** Unknown -->
208
+ <!-- - **Language:** Unknown -->
209
+ <!-- - **License:** Unknown -->
210
+
211
+ ### Model Sources
212
+
213
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
214
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
215
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
216
+
217
+ ### Full Model Architecture
218
+
219
+ ```
220
+ SentenceTransformer(
221
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
222
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
223
+ )
224
+ ```
225
+
226
+ ## Usage
227
+
228
+ ### Direct Usage (Sentence Transformers)
229
+
230
+ First install the Sentence Transformers library:
231
+
232
+ ```bash
233
+ pip install -U sentence-transformers
234
+ ```
235
+
236
+ Then you can load this model and run inference.
237
+ ```python
238
+ from sentence_transformers import SentenceTransformer
239
+
240
+ # Download from the 🤗 Hub
241
+ model = SentenceTransformer("gavinqiangli/my-awesome-bi-encoder")
242
+ # Run inference
243
+ sentences = [
244
+ "How can the drive from Edmonton to Auckland be described, and how do these cities' attractions compare to those in Vancouver?",
245
+ 'How can the drive from Edmonton to Auckland be described, and how does the history of these cities compare and contrast to the history of Vancouver?',
246
+ 'Which optional subjects can I choose for the IAS exam?',
247
+ ]
248
+ embeddings = model.encode(sentences)
249
+ print(embeddings.shape)
250
+ # [3, 768]
251
+
252
+ # Get the similarity scores for the embeddings
253
+ similarities = model.similarity(embeddings, embeddings)
254
+ print(similarities.shape)
255
+ # [3, 3]
256
+ ```
257
+
258
+ <!--
259
+ ### Direct Usage (Transformers)
260
+
261
+ <details><summary>Click to see the direct usage in Transformers</summary>
262
+
263
+ </details>
264
+ -->
265
+
266
+ <!--
267
+ ### Downstream Usage (Sentence Transformers)
268
+
269
+ You can finetune this model on your own dataset.
270
+
271
+ <details><summary>Click to expand</summary>
272
+
273
+ </details>
274
+ -->
275
+
276
+ <!--
277
+ ### Out-of-Scope Use
278
+
279
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
280
+ -->
281
+
282
+ ## Evaluation
283
+
284
+ ### Metrics
285
+
286
+ #### Binary Classification
287
+
288
+ * Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
289
+
290
+ | Metric | Value |
291
+ |:-----------------------------|:-----------|
292
+ | cosine_accuracy | 0.7644 |
293
+ | cosine_accuracy_threshold | 0.8147 |
294
+ | cosine_f1 | 0.6959 |
295
+ | cosine_f1_threshold | 0.7402 |
296
+ | cosine_precision | 0.5946 |
297
+ | cosine_recall | 0.839 |
298
+ | cosine_ap | 0.7113 |
299
+ | dot_accuracy | 0.74 |
300
+ | dot_accuracy_threshold | 153.501 |
301
+ | dot_f1 | 0.6711 |
302
+ | dot_f1_threshold | 133.2327 |
303
+ | dot_precision | 0.5683 |
304
+ | dot_recall | 0.8192 |
305
+ | dot_ap | 0.6542 |
306
+ | manhattan_accuracy | 0.7665 |
307
+ | manhattan_accuracy_threshold | 176.4289 |
308
+ | manhattan_f1 | 0.6973 |
309
+ | manhattan_f1_threshold | 218.9676 |
310
+ | manhattan_precision | 0.59 |
311
+ | manhattan_recall | 0.8522 |
312
+ | manhattan_ap | 0.7109 |
313
+ | euclidean_accuracy | 0.7665 |
314
+ | euclidean_accuracy_threshold | 8.0922 |
315
+ | euclidean_f1 | 0.697 |
316
+ | euclidean_f1_threshold | 9.7942 |
317
+ | euclidean_precision | 0.5946 |
318
+ | euclidean_recall | 0.8421 |
319
+ | euclidean_ap | 0.7109 |
320
+ | max_accuracy | 0.7665 |
321
+ | max_accuracy_threshold | 176.4289 |
322
+ | max_f1 | 0.6973 |
323
+ | max_f1_threshold | 218.9676 |
324
+ | max_precision | 0.5946 |
325
+ | max_recall | 0.8522 |
326
+ | **max_ap** | **0.7113** |
327
+
328
+ <!--
329
+ ## Bias, Risks and Limitations
330
+
331
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
332
+ -->
333
+
334
+ <!--
335
+ ### Recommendations
336
+
337
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
338
+ -->
339
+
340
+ ## Training Details
341
+
342
+ ### Training Dataset
343
+
344
+ #### Unnamed Dataset
345
+
346
+
347
+ * Size: 103,663 training samples
348
+ * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
349
+ * Approximate statistics based on the first 1000 samples:
350
+ | | sentence_0 | sentence_1 | label |
351
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-----------------------------------------------|
352
+ | type | string | string | int |
353
+ | details | <ul><li>min: 6 tokens</li><li>mean: 13.82 tokens</li><li>max: 41 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 13.87 tokens</li><li>max: 44 tokens</li></ul> | <ul><li>0: ~4.80%</li><li>1: ~95.20%</li></ul> |
354
+ * Samples:
355
+ | sentence_0 | sentence_1 | label |
356
+ |:-------------------------------------------------------------------------------------|:---------------------------------------------------------|:---------------|
357
+ | <code>Are Jewish people the most intelligent in the universe?</code> | <code>Why are Jewish people so intelligent?</code> | <code>1</code> |
358
+ | <code>How do I become a good lawyer? What are the qualities of a good lawyer?</code> | <code>How can someone become a successful lawyer?</code> | <code>1</code> |
359
+ | <code>Why is China going to the Moon?</code> | <code>What does China want with the moon?</code> | <code>1</code> |
360
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
361
+ ```json
362
+ {
363
+ "scale": 20.0,
364
+ "similarity_fct": "cos_sim"
365
+ }
366
+ ```
367
+
368
+ ### Training Hyperparameters
369
+ #### Non-Default Hyperparameters
370
+
371
+ - `eval_strategy`: steps
372
+ - `per_device_train_batch_size`: 16
373
+ - `per_device_eval_batch_size`: 16
374
+ - `num_train_epochs`: 1
375
+ - `multi_dataset_batch_sampler`: round_robin
376
+
377
+ #### All Hyperparameters
378
+ <details><summary>Click to expand</summary>
379
+
380
+ - `overwrite_output_dir`: False
381
+ - `do_predict`: False
382
+ - `eval_strategy`: steps
383
+ - `prediction_loss_only`: True
384
+ - `per_device_train_batch_size`: 16
385
+ - `per_device_eval_batch_size`: 16
386
+ - `per_gpu_train_batch_size`: None
387
+ - `per_gpu_eval_batch_size`: None
388
+ - `gradient_accumulation_steps`: 1
389
+ - `eval_accumulation_steps`: None
390
+ - `torch_empty_cache_steps`: None
391
+ - `learning_rate`: 5e-05
392
+ - `weight_decay`: 0.0
393
+ - `adam_beta1`: 0.9
394
+ - `adam_beta2`: 0.999
395
+ - `adam_epsilon`: 1e-08
396
+ - `max_grad_norm`: 1
397
+ - `num_train_epochs`: 1
398
+ - `max_steps`: -1
399
+ - `lr_scheduler_type`: linear
400
+ - `lr_scheduler_kwargs`: {}
401
+ - `warmup_ratio`: 0.0
402
+ - `warmup_steps`: 0
403
+ - `log_level`: passive
404
+ - `log_level_replica`: warning
405
+ - `log_on_each_node`: True
406
+ - `logging_nan_inf_filter`: True
407
+ - `save_safetensors`: True
408
+ - `save_on_each_node`: False
409
+ - `save_only_model`: False
410
+ - `restore_callback_states_from_checkpoint`: False
411
+ - `no_cuda`: False
412
+ - `use_cpu`: False
413
+ - `use_mps_device`: False
414
+ - `seed`: 42
415
+ - `data_seed`: None
416
+ - `jit_mode_eval`: False
417
+ - `use_ipex`: False
418
+ - `bf16`: False
419
+ - `fp16`: False
420
+ - `fp16_opt_level`: O1
421
+ - `half_precision_backend`: auto
422
+ - `bf16_full_eval`: False
423
+ - `fp16_full_eval`: False
424
+ - `tf32`: None
425
+ - `local_rank`: 0
426
+ - `ddp_backend`: None
427
+ - `tpu_num_cores`: None
428
+ - `tpu_metrics_debug`: False
429
+ - `debug`: []
430
+ - `dataloader_drop_last`: False
431
+ - `dataloader_num_workers`: 0
432
+ - `dataloader_prefetch_factor`: None
433
+ - `past_index`: -1
434
+ - `disable_tqdm`: False
435
+ - `remove_unused_columns`: True
436
+ - `label_names`: None
437
+ - `load_best_model_at_end`: False
438
+ - `ignore_data_skip`: False
439
+ - `fsdp`: []
440
+ - `fsdp_min_num_params`: 0
441
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
442
+ - `fsdp_transformer_layer_cls_to_wrap`: None
443
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
444
+ - `deepspeed`: None
445
+ - `label_smoothing_factor`: 0.0
446
+ - `optim`: adamw_torch
447
+ - `optim_args`: None
448
+ - `adafactor`: False
449
+ - `group_by_length`: False
450
+ - `length_column_name`: length
451
+ - `ddp_find_unused_parameters`: None
452
+ - `ddp_bucket_cap_mb`: None
453
+ - `ddp_broadcast_buffers`: False
454
+ - `dataloader_pin_memory`: True
455
+ - `dataloader_persistent_workers`: False
456
+ - `skip_memory_metrics`: True
457
+ - `use_legacy_prediction_loop`: False
458
+ - `push_to_hub`: False
459
+ - `resume_from_checkpoint`: None
460
+ - `hub_model_id`: None
461
+ - `hub_strategy`: every_save
462
+ - `hub_private_repo`: False
463
+ - `hub_always_push`: False
464
+ - `gradient_checkpointing`: False
465
+ - `gradient_checkpointing_kwargs`: None
466
+ - `include_inputs_for_metrics`: False
467
+ - `eval_do_concat_batches`: True
468
+ - `fp16_backend`: auto
469
+ - `push_to_hub_model_id`: None
470
+ - `push_to_hub_organization`: None
471
+ - `mp_parameters`:
472
+ - `auto_find_batch_size`: False
473
+ - `full_determinism`: False
474
+ - `torchdynamo`: None
475
+ - `ray_scope`: last
476
+ - `ddp_timeout`: 1800
477
+ - `torch_compile`: False
478
+ - `torch_compile_backend`: None
479
+ - `torch_compile_mode`: None
480
+ - `dispatch_batches`: None
481
+ - `split_batches`: None
482
+ - `include_tokens_per_second`: False
483
+ - `include_num_input_tokens_seen`: False
484
+ - `neftune_noise_alpha`: None
485
+ - `optim_target_modules`: None
486
+ - `batch_eval_metrics`: False
487
+ - `eval_on_start`: False
488
+ - `eval_use_gather_object`: False
489
+ - `batch_sampler`: batch_sampler
490
+ - `multi_dataset_batch_sampler`: round_robin
491
+
492
+ </details>
493
+
494
+ ### Training Logs
495
+ | Epoch | Step | Training Loss | max_ap |
496
+ |:------:|:----:|:-------------:|:------:|
497
+ | 0.0772 | 500 | 0.0796 | - |
498
+ | 0.1543 | 1000 | 0.0205 | 0.6878 |
499
+ | 0.2315 | 1500 | 0.0197 | - |
500
+ | 0.3087 | 2000 | 0.0201 | 0.6864 |
501
+ | 0.3859 | 2500 | 0.0185 | - |
502
+ | 0.4630 | 3000 | 0.0161 | 0.6933 |
503
+ | 0.5402 | 3500 | 0.0163 | - |
504
+ | 0.6174 | 4000 | 0.0172 | 0.7089 |
505
+ | 0.6946 | 4500 | 0.0172 | - |
506
+ | 0.7717 | 5000 | 0.0143 | 0.7072 |
507
+ | 0.8489 | 5500 | 0.0129 | - |
508
+ | 0.9261 | 6000 | 0.0124 | 0.7112 |
509
+ | 1.0 | 6479 | - | 0.7113 |
510
+
511
+
512
+ ### Framework Versions
513
+ - Python: 3.10.12
514
+ - Sentence Transformers: 3.2.1
515
+ - Transformers: 4.44.2
516
+ - PyTorch: 2.5.0+cu121
517
+ - Accelerate: 0.34.2
518
+ - Datasets: 3.1.0
519
+ - Tokenizers: 0.19.1
520
+
521
+ ## Citation
522
+
523
+ ### BibTeX
524
+
525
+ #### Sentence Transformers
526
+ ```bibtex
527
+ @inproceedings{reimers-2019-sentence-bert,
528
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
529
+ author = "Reimers, Nils and Gurevych, Iryna",
530
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
531
+ month = "11",
532
+ year = "2019",
533
+ publisher = "Association for Computational Linguistics",
534
+ url = "https://arxiv.org/abs/1908.10084",
535
+ }
536
+ ```
537
+
538
+ #### MultipleNegativesRankingLoss
539
+ ```bibtex
540
+ @misc{henderson2017efficient,
541
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
542
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
543
+ year={2017},
544
+ eprint={1705.00652},
545
+ archivePrefix={arXiv},
546
+ primaryClass={cs.CL}
547
+ }
548
+ ```
549
+
550
+ <!--
551
+ ## Glossary
552
+
553
+ *Clearly define terms in order to be accessible across audiences.*
554
+ -->
555
+
556
+ <!--
557
+ ## Model Card Authors
558
+
559
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
560
+ -->
561
+
562
+ <!--
563
+ ## Model Card Contact
564
+
565
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
566
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "output/bi-encoder/qqp_cross_domain_bert-base-uncased",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.44.2",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 30522
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.2.1",
4
+ "transformers": "4.44.2",
5
+ "pytorch": "2.5.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:94b2b583f259ec19a4d2d7b5ba5f3e403553a2011e05b803ca99eceb95f98cb4
3
+ size 437951328
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 128,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": true,
47
+ "mask_token": "[MASK]",
48
+ "max_length": 128,
49
+ "model_max_length": 128,
50
+ "pad_to_multiple_of": null,
51
+ "pad_token": "[PAD]",
52
+ "pad_token_type_id": 0,
53
+ "padding_side": "right",
54
+ "sep_token": "[SEP]",
55
+ "stride": 0,
56
+ "strip_accents": null,
57
+ "tokenize_chinese_chars": true,
58
+ "tokenizer_class": "BertTokenizer",
59
+ "truncation_side": "right",
60
+ "truncation_strategy": "longest_first",
61
+ "unk_token": "[UNK]"
62
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff