|
--- |
|
base_model: gechim/metadata-cls-no-gov-8k-v3 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- f1 |
|
model-index: |
|
- name: PhobertLexicalMeta-v2 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# PhobertLexicalMeta-v2 |
|
|
|
This model is a fine-tuned version of [gechim/metadata-cls-no-gov-8k-v3](https://huggingface.co/gechim/metadata-cls-no-gov-8k-v3) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3926 |
|
- Accuracy: 0.9062 |
|
- F1: 0.8781 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 64 |
|
- eval_batch_size: 64 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |
|
|:-------------:|:------:|:----:|:---------------:|:--------:|:------:| |
|
| No log | 0.8772 | 100 | 0.2699 | 0.9080 | 0.8801 | |
|
| 0.1564 | 1.7544 | 200 | 0.2984 | 0.9011 | 0.8723 | |
|
| 0.073 | 2.6316 | 300 | 0.3218 | 0.8987 | 0.8705 | |
|
| 0.0502 | 3.5088 | 400 | 0.3472 | 0.8927 | 0.8641 | |
|
| 0.0326 | 4.3860 | 500 | 0.3627 | 0.8941 | 0.8635 | |
|
| 0.0285 | 5.2632 | 600 | 0.3752 | 0.8964 | 0.8685 | |
|
| 0.0179 | 6.1404 | 700 | 0.3666 | 0.9025 | 0.8734 | |
|
| 0.0156 | 7.0175 | 800 | 0.3759 | 0.9043 | 0.8748 | |
|
| 0.0156 | 7.8947 | 900 | 0.3830 | 0.9080 | 0.8788 | |
|
| 0.011 | 8.7719 | 1000 | 0.3917 | 0.9039 | 0.8746 | |
|
| 0.0092 | 9.6491 | 1100 | 0.3926 | 0.9062 | 0.8781 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.43.3 |
|
- Pytorch 2.1.2 |
|
- Datasets 2.20.0 |
|
- Tokenizers 0.19.1 |
|
|