gechim's picture
End of training
90dcf06 verified
|
raw
history blame
2.43 kB
metadata
base_model: vinai/phobert-base-v2
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
model-index:
  - name: metadata-cls-no-gov-8k-v3
    results: []

Visualize in Weights & Biases

metadata-cls-no-gov-8k-v3

This model is a fine-tuned version of vinai/phobert-base-v2 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3064
  • Accuracy: 0.9515
  • F1: 0.8155

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
0.5565 1.6393 200 0.1942 0.9472 0.7911
0.1619 3.2787 400 0.1935 0.9404 0.7817
0.1275 4.9180 600 0.1903 0.9430 0.8019
0.0768 6.5574 800 0.2192 0.9489 0.8016
0.0579 8.1967 1000 0.2350 0.9455 0.7866
0.0477 9.8361 1200 0.2572 0.9498 0.7952
0.0358 11.4754 1400 0.2823 0.9413 0.7938
0.0277 13.1148 1600 0.2704 0.9464 0.8096
0.0233 14.7541 1800 0.2868 0.9481 0.7951
0.0139 16.3934 2000 0.3026 0.9438 0.7965
0.0125 18.0328 2200 0.3034 0.9489 0.8035
0.0085 19.6721 2400 0.3064 0.9515 0.8155

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.1.2
  • Datasets 2.20.0
  • Tokenizers 0.19.1