distilbert-base-uncased-lora-text-classification
This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.0415
- Accuracy: {'accuracy': 0.9}
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 250 | 0.4205 | {'accuracy': 0.875} |
0.4414 | 2.0 | 500 | 0.4863 | {'accuracy': 0.868} |
0.4414 | 3.0 | 750 | 0.5868 | {'accuracy': 0.893} |
0.1924 | 4.0 | 1000 | 0.6808 | {'accuracy': 0.894} |
0.1924 | 5.0 | 1250 | 0.7949 | {'accuracy': 0.901} |
0.0713 | 6.0 | 1500 | 0.8349 | {'accuracy': 0.888} |
0.0713 | 7.0 | 1750 | 0.9662 | {'accuracy': 0.893} |
0.0223 | 8.0 | 2000 | 0.9994 | {'accuracy': 0.896} |
0.0223 | 9.0 | 2250 | 1.0344 | {'accuracy': 0.9} |
0.008 | 10.0 | 2500 | 1.0415 | {'accuracy': 0.9} |
Framework versions
- PEFT 0.12.0
- Transformers 4.44.2
- Pytorch 2.4.0
- Datasets 2.21.0
- Tokenizers 0.19.1
- Downloads last month
- 2
Model tree for gegenius/distilbert-base-uncased-lora-text-classification
Base model
distilbert/distilbert-base-uncased