|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
base_model: google/mt5-small |
|
tags: |
|
- summarization |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: mt5-small-finetuned-amazon-en-es |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# mt5-small-finetuned-amazon-en-es |
|
|
|
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 3.2696 |
|
- Rouge1: 18.0077 |
|
- Rouge2: 8.9356 |
|
- Rougel: 17.0726 |
|
- Rougelsum: 17.49 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5.6e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- num_epochs: 8 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:| |
|
| 2.9554 | 1.0 | 771 | 3.4803 | 15.042 | 7.3797 | 14.3849 | 14.6833 | |
|
| 3.4215 | 2.0 | 1542 | 3.3163 | 18.4061 | 9.6431 | 17.5021 | 17.7826 | |
|
| 3.291 | 3.0 | 2313 | 3.2730 | 17.2129 | 9.3229 | 16.4817 | 16.7271 | |
|
| 3.2173 | 4.0 | 3084 | 3.2753 | 18.8265 | 9.6163 | 17.8975 | 18.2779 | |
|
| 3.1352 | 5.0 | 3855 | 3.2602 | 18.1662 | 8.848 | 17.3152 | 17.6519 | |
|
| 3.0988 | 6.0 | 4626 | 3.2715 | 17.8952 | 9.1387 | 16.9838 | 17.4692 | |
|
| 3.0745 | 7.0 | 5397 | 3.2663 | 17.5901 | 8.517 | 16.636 | 17.0347 | |
|
| 3.0408 | 8.0 | 6168 | 3.2696 | 18.0077 | 8.9356 | 17.0726 | 17.49 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.46.2 |
|
- Pytorch 2.5.1+cu121 |
|
- Datasets 3.1.0 |
|
- Tokenizers 0.20.3 |
|
|