|
--- |
|
license: apache-2.0 |
|
language: |
|
- ko |
|
metrics: |
|
- sklearn-accuracy_score |
|
datasets: |
|
- kor_3i4k |
|
pipeline_tag: text-classification |
|
--- |
|
|
|
# intent-classification-korean |
|
|
|
fine-tuned for 'klue/roberta-base' |
|
used data : 'kor_3i4k' |
|
|
|
## How to Get Started with the Model |
|
|
|
```python |
|
from transformers import TextClassificationPipeline |
|
from transformers import AutoModelForSequenceClassification, AutoTokenizer |
|
|
|
model_path = "gg4ever/intent-classifcation-korean" |
|
tokenizer = AutoTokenizer.from_pretrained(model_path) |
|
model = AutoModelForSequenceClassification.from_pretrained(model_path) |
|
|
|
text_classifier = TextClassificationPipeline( |
|
tokenizer=tokenizer, |
|
model=model.to('cpu'), |
|
return_all_scores=True |
|
) |
|
|
|
# predict |
|
text = "์ด๋ฆ์ด ๋ญ์์?" |
|
|
|
preds_list = text_classifier(text) |
|
preds_list |
|
|
|
``` |
|
|
|
### Training Hyperparameters |
|
|
|
|hyperparameters|values| |
|
|-----------------------------|-------| |
|
|predict_with_generate|True| |
|
|evaluation_strategy|"steps"| |
|
|per_device_train_batch_size|32| |
|
|per_device_eval_batch_size|32| |
|
|num_train_epochs|3| |
|
|learning_rate|4e-5| |
|
|warmup_steps|1000| |