ngxson's picture
ngxson HF staff
Upload README.md with huggingface_hub
c4e88d9 verified
|
raw
history blame
62.1 kB
---
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- mteb
- llama-cpp
- gguf-my-repo
datasets:
- allenai/c4
language: en
inference: false
license: apache-2.0
base_model: jinaai/jina-embeddings-v2-base-en
model-index:
- name: jina-embedding-b-en-v2
results:
- task:
type: Classification
dataset:
name: MTEB AmazonCounterfactualClassification (en)
type: mteb/amazon_counterfactual
config: en
split: test
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
metrics:
- type: accuracy
value: 74.73134328358209
- type: ap
value: 37.765427081831035
- type: f1
value: 68.79367444339518
- task:
type: Classification
dataset:
name: MTEB AmazonPolarityClassification
type: mteb/amazon_polarity
config: default
split: test
revision: e2d317d38cd51312af73b3d32a06d1a08b442046
metrics:
- type: accuracy
value: 88.544275
- type: ap
value: 84.61328675662887
- type: f1
value: 88.51879035862375
- task:
type: Classification
dataset:
name: MTEB AmazonReviewsClassification (en)
type: mteb/amazon_reviews_multi
config: en
split: test
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
metrics:
- type: accuracy
value: 45.263999999999996
- type: f1
value: 43.778759656699435
- task:
type: Retrieval
dataset:
name: MTEB ArguAna
type: arguana
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 21.693
- type: map_at_10
value: 35.487
- type: map_at_100
value: 36.862
- type: map_at_1000
value: 36.872
- type: map_at_3
value: 30.049999999999997
- type: map_at_5
value: 32.966
- type: mrr_at_1
value: 21.977
- type: mrr_at_10
value: 35.565999999999995
- type: mrr_at_100
value: 36.948
- type: mrr_at_1000
value: 36.958
- type: mrr_at_3
value: 30.121
- type: mrr_at_5
value: 33.051
- type: ndcg_at_1
value: 21.693
- type: ndcg_at_10
value: 44.181
- type: ndcg_at_100
value: 49.982
- type: ndcg_at_1000
value: 50.233000000000004
- type: ndcg_at_3
value: 32.830999999999996
- type: ndcg_at_5
value: 38.080000000000005
- type: precision_at_1
value: 21.693
- type: precision_at_10
value: 7.248
- type: precision_at_100
value: 0.9769999999999999
- type: precision_at_1000
value: 0.1
- type: precision_at_3
value: 13.632
- type: precision_at_5
value: 10.725
- type: recall_at_1
value: 21.693
- type: recall_at_10
value: 72.475
- type: recall_at_100
value: 97.653
- type: recall_at_1000
value: 99.57300000000001
- type: recall_at_3
value: 40.896
- type: recall_at_5
value: 53.627
- task:
type: Clustering
dataset:
name: MTEB ArxivClusteringP2P
type: mteb/arxiv-clustering-p2p
config: default
split: test
revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
metrics:
- type: v_measure
value: 45.39242428696777
- task:
type: Clustering
dataset:
name: MTEB ArxivClusteringS2S
type: mteb/arxiv-clustering-s2s
config: default
split: test
revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
metrics:
- type: v_measure
value: 36.675626784714
- task:
type: Reranking
dataset:
name: MTEB AskUbuntuDupQuestions
type: mteb/askubuntudupquestions-reranking
config: default
split: test
revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
metrics:
- type: map
value: 62.247725694904034
- type: mrr
value: 74.91359978894604
- task:
type: STS
dataset:
name: MTEB BIOSSES
type: mteb/biosses-sts
config: default
split: test
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
metrics:
- type: cos_sim_pearson
value: 82.68003802970496
- type: cos_sim_spearman
value: 81.23438110096286
- type: euclidean_pearson
value: 81.87462986142582
- type: euclidean_spearman
value: 81.23438110096286
- type: manhattan_pearson
value: 81.61162566600755
- type: manhattan_spearman
value: 81.11329400456184
- task:
type: Classification
dataset:
name: MTEB Banking77Classification
type: mteb/banking77
config: default
split: test
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
metrics:
- type: accuracy
value: 84.01298701298701
- type: f1
value: 83.31690714969382
- task:
type: Clustering
dataset:
name: MTEB BiorxivClusteringP2P
type: mteb/biorxiv-clustering-p2p
config: default
split: test
revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
metrics:
- type: v_measure
value: 37.050108150972086
- task:
type: Clustering
dataset:
name: MTEB BiorxivClusteringS2S
type: mteb/biorxiv-clustering-s2s
config: default
split: test
revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
metrics:
- type: v_measure
value: 30.15731442819715
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackAndroidRetrieval
type: BeIR/cqadupstack
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 31.391999999999996
- type: map_at_10
value: 42.597
- type: map_at_100
value: 44.07
- type: map_at_1000
value: 44.198
- type: map_at_3
value: 38.957
- type: map_at_5
value: 40.961
- type: mrr_at_1
value: 37.196
- type: mrr_at_10
value: 48.152
- type: mrr_at_100
value: 48.928
- type: mrr_at_1000
value: 48.964999999999996
- type: mrr_at_3
value: 45.446
- type: mrr_at_5
value: 47.205999999999996
- type: ndcg_at_1
value: 37.196
- type: ndcg_at_10
value: 49.089
- type: ndcg_at_100
value: 54.471000000000004
- type: ndcg_at_1000
value: 56.385
- type: ndcg_at_3
value: 43.699
- type: ndcg_at_5
value: 46.22
- type: precision_at_1
value: 37.196
- type: precision_at_10
value: 9.313
- type: precision_at_100
value: 1.478
- type: precision_at_1000
value: 0.198
- type: precision_at_3
value: 20.839
- type: precision_at_5
value: 14.936
- type: recall_at_1
value: 31.391999999999996
- type: recall_at_10
value: 61.876
- type: recall_at_100
value: 84.214
- type: recall_at_1000
value: 95.985
- type: recall_at_3
value: 46.6
- type: recall_at_5
value: 53.588
- type: map_at_1
value: 29.083
- type: map_at_10
value: 38.812999999999995
- type: map_at_100
value: 40.053
- type: map_at_1000
value: 40.188
- type: map_at_3
value: 36.111
- type: map_at_5
value: 37.519000000000005
- type: mrr_at_1
value: 36.497
- type: mrr_at_10
value: 44.85
- type: mrr_at_100
value: 45.546
- type: mrr_at_1000
value: 45.593
- type: mrr_at_3
value: 42.686
- type: mrr_at_5
value: 43.909
- type: ndcg_at_1
value: 36.497
- type: ndcg_at_10
value: 44.443
- type: ndcg_at_100
value: 48.979
- type: ndcg_at_1000
value: 51.154999999999994
- type: ndcg_at_3
value: 40.660000000000004
- type: ndcg_at_5
value: 42.193000000000005
- type: precision_at_1
value: 36.497
- type: precision_at_10
value: 8.433
- type: precision_at_100
value: 1.369
- type: precision_at_1000
value: 0.185
- type: precision_at_3
value: 19.894000000000002
- type: precision_at_5
value: 13.873
- type: recall_at_1
value: 29.083
- type: recall_at_10
value: 54.313
- type: recall_at_100
value: 73.792
- type: recall_at_1000
value: 87.629
- type: recall_at_3
value: 42.257
- type: recall_at_5
value: 47.066
- type: map_at_1
value: 38.556000000000004
- type: map_at_10
value: 50.698
- type: map_at_100
value: 51.705
- type: map_at_1000
value: 51.768
- type: map_at_3
value: 47.848
- type: map_at_5
value: 49.358000000000004
- type: mrr_at_1
value: 43.95
- type: mrr_at_10
value: 54.191
- type: mrr_at_100
value: 54.852999999999994
- type: mrr_at_1000
value: 54.885
- type: mrr_at_3
value: 51.954
- type: mrr_at_5
value: 53.13
- type: ndcg_at_1
value: 43.95
- type: ndcg_at_10
value: 56.516
- type: ndcg_at_100
value: 60.477000000000004
- type: ndcg_at_1000
value: 61.746
- type: ndcg_at_3
value: 51.601
- type: ndcg_at_5
value: 53.795
- type: precision_at_1
value: 43.95
- type: precision_at_10
value: 9.009
- type: precision_at_100
value: 1.189
- type: precision_at_1000
value: 0.135
- type: precision_at_3
value: 22.989
- type: precision_at_5
value: 15.473
- type: recall_at_1
value: 38.556000000000004
- type: recall_at_10
value: 70.159
- type: recall_at_100
value: 87.132
- type: recall_at_1000
value: 96.16
- type: recall_at_3
value: 56.906
- type: recall_at_5
value: 62.332
- type: map_at_1
value: 24.238
- type: map_at_10
value: 32.5
- type: map_at_100
value: 33.637
- type: map_at_1000
value: 33.719
- type: map_at_3
value: 30.026999999999997
- type: map_at_5
value: 31.555
- type: mrr_at_1
value: 26.328000000000003
- type: mrr_at_10
value: 34.44
- type: mrr_at_100
value: 35.455999999999996
- type: mrr_at_1000
value: 35.521
- type: mrr_at_3
value: 32.034
- type: mrr_at_5
value: 33.565
- type: ndcg_at_1
value: 26.328000000000003
- type: ndcg_at_10
value: 37.202
- type: ndcg_at_100
value: 42.728
- type: ndcg_at_1000
value: 44.792
- type: ndcg_at_3
value: 32.368
- type: ndcg_at_5
value: 35.008
- type: precision_at_1
value: 26.328000000000003
- type: precision_at_10
value: 5.7059999999999995
- type: precision_at_100
value: 0.8880000000000001
- type: precision_at_1000
value: 0.11100000000000002
- type: precision_at_3
value: 13.672
- type: precision_at_5
value: 9.74
- type: recall_at_1
value: 24.238
- type: recall_at_10
value: 49.829
- type: recall_at_100
value: 75.21
- type: recall_at_1000
value: 90.521
- type: recall_at_3
value: 36.867
- type: recall_at_5
value: 43.241
- type: map_at_1
value: 15.378
- type: map_at_10
value: 22.817999999999998
- type: map_at_100
value: 23.977999999999998
- type: map_at_1000
value: 24.108
- type: map_at_3
value: 20.719
- type: map_at_5
value: 21.889
- type: mrr_at_1
value: 19.03
- type: mrr_at_10
value: 27.022000000000002
- type: mrr_at_100
value: 28.011999999999997
- type: mrr_at_1000
value: 28.096
- type: mrr_at_3
value: 24.855
- type: mrr_at_5
value: 26.029999999999998
- type: ndcg_at_1
value: 19.03
- type: ndcg_at_10
value: 27.526
- type: ndcg_at_100
value: 33.040000000000006
- type: ndcg_at_1000
value: 36.187000000000005
- type: ndcg_at_3
value: 23.497
- type: ndcg_at_5
value: 25.334
- type: precision_at_1
value: 19.03
- type: precision_at_10
value: 4.963
- type: precision_at_100
value: 0.893
- type: precision_at_1000
value: 0.13
- type: precision_at_3
value: 11.360000000000001
- type: precision_at_5
value: 8.134
- type: recall_at_1
value: 15.378
- type: recall_at_10
value: 38.061
- type: recall_at_100
value: 61.754
- type: recall_at_1000
value: 84.259
- type: recall_at_3
value: 26.788
- type: recall_at_5
value: 31.326999999999998
- type: map_at_1
value: 27.511999999999997
- type: map_at_10
value: 37.429
- type: map_at_100
value: 38.818000000000005
- type: map_at_1000
value: 38.924
- type: map_at_3
value: 34.625
- type: map_at_5
value: 36.064
- type: mrr_at_1
value: 33.300999999999995
- type: mrr_at_10
value: 43.036
- type: mrr_at_100
value: 43.894
- type: mrr_at_1000
value: 43.936
- type: mrr_at_3
value: 40.825
- type: mrr_at_5
value: 42.028
- type: ndcg_at_1
value: 33.300999999999995
- type: ndcg_at_10
value: 43.229
- type: ndcg_at_100
value: 48.992000000000004
- type: ndcg_at_1000
value: 51.02100000000001
- type: ndcg_at_3
value: 38.794000000000004
- type: ndcg_at_5
value: 40.65
- type: precision_at_1
value: 33.300999999999995
- type: precision_at_10
value: 7.777000000000001
- type: precision_at_100
value: 1.269
- type: precision_at_1000
value: 0.163
- type: precision_at_3
value: 18.351
- type: precision_at_5
value: 12.762
- type: recall_at_1
value: 27.511999999999997
- type: recall_at_10
value: 54.788000000000004
- type: recall_at_100
value: 79.105
- type: recall_at_1000
value: 92.49199999999999
- type: recall_at_3
value: 41.924
- type: recall_at_5
value: 47.026
- type: map_at_1
value: 24.117
- type: map_at_10
value: 33.32
- type: map_at_100
value: 34.677
- type: map_at_1000
value: 34.78
- type: map_at_3
value: 30.233999999999998
- type: map_at_5
value: 31.668000000000003
- type: mrr_at_1
value: 29.566
- type: mrr_at_10
value: 38.244
- type: mrr_at_100
value: 39.245000000000005
- type: mrr_at_1000
value: 39.296
- type: mrr_at_3
value: 35.864000000000004
- type: mrr_at_5
value: 36.919999999999995
- type: ndcg_at_1
value: 29.566
- type: ndcg_at_10
value: 39.127
- type: ndcg_at_100
value: 44.989000000000004
- type: ndcg_at_1000
value: 47.189
- type: ndcg_at_3
value: 34.039
- type: ndcg_at_5
value: 35.744
- type: precision_at_1
value: 29.566
- type: precision_at_10
value: 7.385999999999999
- type: precision_at_100
value: 1.204
- type: precision_at_1000
value: 0.158
- type: precision_at_3
value: 16.286
- type: precision_at_5
value: 11.484
- type: recall_at_1
value: 24.117
- type: recall_at_10
value: 51.559999999999995
- type: recall_at_100
value: 77.104
- type: recall_at_1000
value: 91.79899999999999
- type: recall_at_3
value: 36.82
- type: recall_at_5
value: 41.453
- type: map_at_1
value: 25.17625
- type: map_at_10
value: 34.063916666666664
- type: map_at_100
value: 35.255500000000005
- type: map_at_1000
value: 35.37275
- type: map_at_3
value: 31.351666666666667
- type: map_at_5
value: 32.80608333333333
- type: mrr_at_1
value: 29.59783333333333
- type: mrr_at_10
value: 38.0925
- type: mrr_at_100
value: 38.957249999999995
- type: mrr_at_1000
value: 39.01608333333333
- type: mrr_at_3
value: 35.77625
- type: mrr_at_5
value: 37.04991666666667
- type: ndcg_at_1
value: 29.59783333333333
- type: ndcg_at_10
value: 39.343666666666664
- type: ndcg_at_100
value: 44.488249999999994
- type: ndcg_at_1000
value: 46.83358333333334
- type: ndcg_at_3
value: 34.69708333333333
- type: ndcg_at_5
value: 36.75075
- type: precision_at_1
value: 29.59783333333333
- type: precision_at_10
value: 6.884083333333332
- type: precision_at_100
value: 1.114
- type: precision_at_1000
value: 0.15108333333333332
- type: precision_at_3
value: 15.965250000000003
- type: precision_at_5
value: 11.246500000000001
- type: recall_at_1
value: 25.17625
- type: recall_at_10
value: 51.015999999999984
- type: recall_at_100
value: 73.60174999999998
- type: recall_at_1000
value: 89.849
- type: recall_at_3
value: 37.88399999999999
- type: recall_at_5
value: 43.24541666666666
- type: map_at_1
value: 24.537
- type: map_at_10
value: 31.081999999999997
- type: map_at_100
value: 32.042
- type: map_at_1000
value: 32.141
- type: map_at_3
value: 29.137
- type: map_at_5
value: 30.079
- type: mrr_at_1
value: 27.454
- type: mrr_at_10
value: 33.694
- type: mrr_at_100
value: 34.579
- type: mrr_at_1000
value: 34.649
- type: mrr_at_3
value: 32.004
- type: mrr_at_5
value: 32.794000000000004
- type: ndcg_at_1
value: 27.454
- type: ndcg_at_10
value: 34.915
- type: ndcg_at_100
value: 39.641
- type: ndcg_at_1000
value: 42.105
- type: ndcg_at_3
value: 31.276
- type: ndcg_at_5
value: 32.65
- type: precision_at_1
value: 27.454
- type: precision_at_10
value: 5.337
- type: precision_at_100
value: 0.8250000000000001
- type: precision_at_1000
value: 0.11199999999999999
- type: precision_at_3
value: 13.241
- type: precision_at_5
value: 8.895999999999999
- type: recall_at_1
value: 24.537
- type: recall_at_10
value: 44.324999999999996
- type: recall_at_100
value: 65.949
- type: recall_at_1000
value: 84.017
- type: recall_at_3
value: 33.857
- type: recall_at_5
value: 37.316
- type: map_at_1
value: 17.122
- type: map_at_10
value: 24.32
- type: map_at_100
value: 25.338
- type: map_at_1000
value: 25.462
- type: map_at_3
value: 22.064
- type: map_at_5
value: 23.322000000000003
- type: mrr_at_1
value: 20.647
- type: mrr_at_10
value: 27.858
- type: mrr_at_100
value: 28.743999999999996
- type: mrr_at_1000
value: 28.819
- type: mrr_at_3
value: 25.769
- type: mrr_at_5
value: 26.964
- type: ndcg_at_1
value: 20.647
- type: ndcg_at_10
value: 28.849999999999998
- type: ndcg_at_100
value: 33.849000000000004
- type: ndcg_at_1000
value: 36.802
- type: ndcg_at_3
value: 24.799
- type: ndcg_at_5
value: 26.682
- type: precision_at_1
value: 20.647
- type: precision_at_10
value: 5.2170000000000005
- type: precision_at_100
value: 0.906
- type: precision_at_1000
value: 0.134
- type: precision_at_3
value: 11.769
- type: precision_at_5
value: 8.486
- type: recall_at_1
value: 17.122
- type: recall_at_10
value: 38.999
- type: recall_at_100
value: 61.467000000000006
- type: recall_at_1000
value: 82.716
- type: recall_at_3
value: 27.601
- type: recall_at_5
value: 32.471
- type: map_at_1
value: 24.396
- type: map_at_10
value: 33.415
- type: map_at_100
value: 34.521
- type: map_at_1000
value: 34.631
- type: map_at_3
value: 30.703999999999997
- type: map_at_5
value: 32.166
- type: mrr_at_1
value: 28.825
- type: mrr_at_10
value: 37.397000000000006
- type: mrr_at_100
value: 38.286
- type: mrr_at_1000
value: 38.346000000000004
- type: mrr_at_3
value: 35.028
- type: mrr_at_5
value: 36.32
- type: ndcg_at_1
value: 28.825
- type: ndcg_at_10
value: 38.656
- type: ndcg_at_100
value: 43.856
- type: ndcg_at_1000
value: 46.31
- type: ndcg_at_3
value: 33.793
- type: ndcg_at_5
value: 35.909
- type: precision_at_1
value: 28.825
- type: precision_at_10
value: 6.567
- type: precision_at_100
value: 1.0330000000000001
- type: precision_at_1000
value: 0.135
- type: precision_at_3
value: 15.516
- type: precision_at_5
value: 10.914
- type: recall_at_1
value: 24.396
- type: recall_at_10
value: 50.747
- type: recall_at_100
value: 73.477
- type: recall_at_1000
value: 90.801
- type: recall_at_3
value: 37.1
- type: recall_at_5
value: 42.589
- type: map_at_1
value: 25.072
- type: map_at_10
value: 34.307
- type: map_at_100
value: 35.725
- type: map_at_1000
value: 35.943999999999996
- type: map_at_3
value: 30.906
- type: map_at_5
value: 32.818000000000005
- type: mrr_at_1
value: 29.644
- type: mrr_at_10
value: 38.673
- type: mrr_at_100
value: 39.459
- type: mrr_at_1000
value: 39.527
- type: mrr_at_3
value: 35.771
- type: mrr_at_5
value: 37.332
- type: ndcg_at_1
value: 29.644
- type: ndcg_at_10
value: 40.548
- type: ndcg_at_100
value: 45.678999999999995
- type: ndcg_at_1000
value: 48.488
- type: ndcg_at_3
value: 34.887
- type: ndcg_at_5
value: 37.543
- type: precision_at_1
value: 29.644
- type: precision_at_10
value: 7.688000000000001
- type: precision_at_100
value: 1.482
- type: precision_at_1000
value: 0.23600000000000002
- type: precision_at_3
value: 16.206
- type: precision_at_5
value: 12.016
- type: recall_at_1
value: 25.072
- type: recall_at_10
value: 53.478
- type: recall_at_100
value: 76.07300000000001
- type: recall_at_1000
value: 93.884
- type: recall_at_3
value: 37.583
- type: recall_at_5
value: 44.464
- type: map_at_1
value: 20.712
- type: map_at_10
value: 27.467999999999996
- type: map_at_100
value: 28.502
- type: map_at_1000
value: 28.610000000000003
- type: map_at_3
value: 24.887999999999998
- type: map_at_5
value: 26.273999999999997
- type: mrr_at_1
value: 22.736
- type: mrr_at_10
value: 29.553
- type: mrr_at_100
value: 30.485
- type: mrr_at_1000
value: 30.56
- type: mrr_at_3
value: 27.078999999999997
- type: mrr_at_5
value: 28.401
- type: ndcg_at_1
value: 22.736
- type: ndcg_at_10
value: 32.023
- type: ndcg_at_100
value: 37.158
- type: ndcg_at_1000
value: 39.823
- type: ndcg_at_3
value: 26.951999999999998
- type: ndcg_at_5
value: 29.281000000000002
- type: precision_at_1
value: 22.736
- type: precision_at_10
value: 5.213
- type: precision_at_100
value: 0.832
- type: precision_at_1000
value: 0.116
- type: precision_at_3
value: 11.459999999999999
- type: precision_at_5
value: 8.244
- type: recall_at_1
value: 20.712
- type: recall_at_10
value: 44.057
- type: recall_at_100
value: 67.944
- type: recall_at_1000
value: 87.925
- type: recall_at_3
value: 30.305
- type: recall_at_5
value: 36.071999999999996
- task:
type: Retrieval
dataset:
name: MTEB ClimateFEVER
type: climate-fever
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 10.181999999999999
- type: map_at_10
value: 16.66
- type: map_at_100
value: 18.273
- type: map_at_1000
value: 18.45
- type: map_at_3
value: 14.141
- type: map_at_5
value: 15.455
- type: mrr_at_1
value: 22.15
- type: mrr_at_10
value: 32.062000000000005
- type: mrr_at_100
value: 33.116
- type: mrr_at_1000
value: 33.168
- type: mrr_at_3
value: 28.827
- type: mrr_at_5
value: 30.892999999999997
- type: ndcg_at_1
value: 22.15
- type: ndcg_at_10
value: 23.532
- type: ndcg_at_100
value: 30.358
- type: ndcg_at_1000
value: 33.783
- type: ndcg_at_3
value: 19.222
- type: ndcg_at_5
value: 20.919999999999998
- type: precision_at_1
value: 22.15
- type: precision_at_10
value: 7.185999999999999
- type: precision_at_100
value: 1.433
- type: precision_at_1000
value: 0.207
- type: precision_at_3
value: 13.941
- type: precision_at_5
value: 10.906
- type: recall_at_1
value: 10.181999999999999
- type: recall_at_10
value: 28.104000000000003
- type: recall_at_100
value: 51.998999999999995
- type: recall_at_1000
value: 71.311
- type: recall_at_3
value: 17.698
- type: recall_at_5
value: 22.262999999999998
- task:
type: Retrieval
dataset:
name: MTEB DBPedia
type: dbpedia-entity
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 6.669
- type: map_at_10
value: 15.552
- type: map_at_100
value: 21.865000000000002
- type: map_at_1000
value: 23.268
- type: map_at_3
value: 11.309
- type: map_at_5
value: 13.084000000000001
- type: mrr_at_1
value: 55.50000000000001
- type: mrr_at_10
value: 66.46600000000001
- type: mrr_at_100
value: 66.944
- type: mrr_at_1000
value: 66.956
- type: mrr_at_3
value: 64.542
- type: mrr_at_5
value: 65.717
- type: ndcg_at_1
value: 44.75
- type: ndcg_at_10
value: 35.049
- type: ndcg_at_100
value: 39.073
- type: ndcg_at_1000
value: 46.208
- type: ndcg_at_3
value: 39.525
- type: ndcg_at_5
value: 37.156
- type: precision_at_1
value: 55.50000000000001
- type: precision_at_10
value: 27.800000000000004
- type: precision_at_100
value: 9.013
- type: precision_at_1000
value: 1.8800000000000001
- type: precision_at_3
value: 42.667
- type: precision_at_5
value: 36.0
- type: recall_at_1
value: 6.669
- type: recall_at_10
value: 21.811
- type: recall_at_100
value: 45.112
- type: recall_at_1000
value: 67.806
- type: recall_at_3
value: 13.373
- type: recall_at_5
value: 16.615
- task:
type: Classification
dataset:
name: MTEB EmotionClassification
type: mteb/emotion
config: default
split: test
revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
metrics:
- type: accuracy
value: 48.769999999999996
- type: f1
value: 42.91448356376592
- task:
type: Retrieval
dataset:
name: MTEB FEVER
type: fever
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 54.013
- type: map_at_10
value: 66.239
- type: map_at_100
value: 66.62599999999999
- type: map_at_1000
value: 66.644
- type: map_at_3
value: 63.965
- type: map_at_5
value: 65.45400000000001
- type: mrr_at_1
value: 58.221000000000004
- type: mrr_at_10
value: 70.43700000000001
- type: mrr_at_100
value: 70.744
- type: mrr_at_1000
value: 70.75099999999999
- type: mrr_at_3
value: 68.284
- type: mrr_at_5
value: 69.721
- type: ndcg_at_1
value: 58.221000000000004
- type: ndcg_at_10
value: 72.327
- type: ndcg_at_100
value: 73.953
- type: ndcg_at_1000
value: 74.312
- type: ndcg_at_3
value: 68.062
- type: ndcg_at_5
value: 70.56400000000001
- type: precision_at_1
value: 58.221000000000004
- type: precision_at_10
value: 9.521
- type: precision_at_100
value: 1.045
- type: precision_at_1000
value: 0.109
- type: precision_at_3
value: 27.348
- type: precision_at_5
value: 17.794999999999998
- type: recall_at_1
value: 54.013
- type: recall_at_10
value: 86.957
- type: recall_at_100
value: 93.911
- type: recall_at_1000
value: 96.38
- type: recall_at_3
value: 75.555
- type: recall_at_5
value: 81.671
- task:
type: Retrieval
dataset:
name: MTEB FiQA2018
type: fiqa
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 21.254
- type: map_at_10
value: 33.723
- type: map_at_100
value: 35.574
- type: map_at_1000
value: 35.730000000000004
- type: map_at_3
value: 29.473
- type: map_at_5
value: 31.543
- type: mrr_at_1
value: 41.358
- type: mrr_at_10
value: 49.498
- type: mrr_at_100
value: 50.275999999999996
- type: mrr_at_1000
value: 50.308
- type: mrr_at_3
value: 47.016000000000005
- type: mrr_at_5
value: 48.336
- type: ndcg_at_1
value: 41.358
- type: ndcg_at_10
value: 41.579
- type: ndcg_at_100
value: 48.455
- type: ndcg_at_1000
value: 51.165000000000006
- type: ndcg_at_3
value: 37.681
- type: ndcg_at_5
value: 38.49
- type: precision_at_1
value: 41.358
- type: precision_at_10
value: 11.543000000000001
- type: precision_at_100
value: 1.87
- type: precision_at_1000
value: 0.23600000000000002
- type: precision_at_3
value: 24.743000000000002
- type: precision_at_5
value: 17.994
- type: recall_at_1
value: 21.254
- type: recall_at_10
value: 48.698
- type: recall_at_100
value: 74.588
- type: recall_at_1000
value: 91.00200000000001
- type: recall_at_3
value: 33.939
- type: recall_at_5
value: 39.367000000000004
- task:
type: Retrieval
dataset:
name: MTEB HotpotQA
type: hotpotqa
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 35.922
- type: map_at_10
value: 52.32599999999999
- type: map_at_100
value: 53.18000000000001
- type: map_at_1000
value: 53.245
- type: map_at_3
value: 49.294
- type: map_at_5
value: 51.202999999999996
- type: mrr_at_1
value: 71.843
- type: mrr_at_10
value: 78.24600000000001
- type: mrr_at_100
value: 78.515
- type: mrr_at_1000
value: 78.527
- type: mrr_at_3
value: 77.17500000000001
- type: mrr_at_5
value: 77.852
- type: ndcg_at_1
value: 71.843
- type: ndcg_at_10
value: 61.379
- type: ndcg_at_100
value: 64.535
- type: ndcg_at_1000
value: 65.888
- type: ndcg_at_3
value: 56.958
- type: ndcg_at_5
value: 59.434
- type: precision_at_1
value: 71.843
- type: precision_at_10
value: 12.686
- type: precision_at_100
value: 1.517
- type: precision_at_1000
value: 0.16999999999999998
- type: precision_at_3
value: 35.778
- type: precision_at_5
value: 23.422
- type: recall_at_1
value: 35.922
- type: recall_at_10
value: 63.43
- type: recall_at_100
value: 75.868
- type: recall_at_1000
value: 84.88900000000001
- type: recall_at_3
value: 53.666000000000004
- type: recall_at_5
value: 58.555
- task:
type: Classification
dataset:
name: MTEB ImdbClassification
type: mteb/imdb
config: default
split: test
revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
metrics:
- type: accuracy
value: 79.4408
- type: ap
value: 73.52820871620366
- type: f1
value: 79.36240238685001
- task:
type: Retrieval
dataset:
name: MTEB MSMARCO
type: msmarco
config: default
split: dev
revision: None
metrics:
- type: map_at_1
value: 21.826999999999998
- type: map_at_10
value: 34.04
- type: map_at_100
value: 35.226
- type: map_at_1000
value: 35.275
- type: map_at_3
value: 30.165999999999997
- type: map_at_5
value: 32.318000000000005
- type: mrr_at_1
value: 22.464000000000002
- type: mrr_at_10
value: 34.631
- type: mrr_at_100
value: 35.752
- type: mrr_at_1000
value: 35.795
- type: mrr_at_3
value: 30.798
- type: mrr_at_5
value: 32.946999999999996
- type: ndcg_at_1
value: 22.464000000000002
- type: ndcg_at_10
value: 40.919
- type: ndcg_at_100
value: 46.632
- type: ndcg_at_1000
value: 47.833
- type: ndcg_at_3
value: 32.992
- type: ndcg_at_5
value: 36.834
- type: precision_at_1
value: 22.464000000000002
- type: precision_at_10
value: 6.494
- type: precision_at_100
value: 0.9369999999999999
- type: precision_at_1000
value: 0.104
- type: precision_at_3
value: 14.021
- type: precision_at_5
value: 10.347000000000001
- type: recall_at_1
value: 21.826999999999998
- type: recall_at_10
value: 62.132
- type: recall_at_100
value: 88.55199999999999
- type: recall_at_1000
value: 97.707
- type: recall_at_3
value: 40.541
- type: recall_at_5
value: 49.739
- task:
type: Classification
dataset:
name: MTEB MTOPDomainClassification (en)
type: mteb/mtop_domain
config: en
split: test
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
metrics:
- type: accuracy
value: 95.68399452804377
- type: f1
value: 95.25490609832268
- task:
type: Classification
dataset:
name: MTEB MTOPIntentClassification (en)
type: mteb/mtop_intent
config: en
split: test
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
metrics:
- type: accuracy
value: 83.15321477428182
- type: f1
value: 60.35476439087966
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (en)
type: mteb/amazon_massive_intent
config: en
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 71.92669804976462
- type: f1
value: 69.22815107207565
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (en)
type: mteb/amazon_massive_scenario
config: en
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 74.4855413584398
- type: f1
value: 72.92107516103387
- task:
type: Clustering
dataset:
name: MTEB MedrxivClusteringP2P
type: mteb/medrxiv-clustering-p2p
config: default
split: test
revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
metrics:
- type: v_measure
value: 32.412679360205544
- task:
type: Clustering
dataset:
name: MTEB MedrxivClusteringS2S
type: mteb/medrxiv-clustering-s2s
config: default
split: test
revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
metrics:
- type: v_measure
value: 28.09211869875204
- task:
type: Reranking
dataset:
name: MTEB MindSmallReranking
type: mteb/mind_small
config: default
split: test
revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
metrics:
- type: map
value: 30.540919056982545
- type: mrr
value: 31.529904607063536
- task:
type: Retrieval
dataset:
name: MTEB NFCorpus
type: nfcorpus
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 5.745
- type: map_at_10
value: 12.013
- type: map_at_100
value: 15.040000000000001
- type: map_at_1000
value: 16.427
- type: map_at_3
value: 8.841000000000001
- type: map_at_5
value: 10.289
- type: mrr_at_1
value: 45.201
- type: mrr_at_10
value: 53.483999999999995
- type: mrr_at_100
value: 54.20700000000001
- type: mrr_at_1000
value: 54.252
- type: mrr_at_3
value: 51.29
- type: mrr_at_5
value: 52.73
- type: ndcg_at_1
value: 43.808
- type: ndcg_at_10
value: 32.445
- type: ndcg_at_100
value: 30.031000000000002
- type: ndcg_at_1000
value: 39.007
- type: ndcg_at_3
value: 37.204
- type: ndcg_at_5
value: 35.07
- type: precision_at_1
value: 45.201
- type: precision_at_10
value: 23.684
- type: precision_at_100
value: 7.600999999999999
- type: precision_at_1000
value: 2.043
- type: precision_at_3
value: 33.953
- type: precision_at_5
value: 29.412
- type: recall_at_1
value: 5.745
- type: recall_at_10
value: 16.168
- type: recall_at_100
value: 30.875999999999998
- type: recall_at_1000
value: 62.686
- type: recall_at_3
value: 9.75
- type: recall_at_5
value: 12.413
- task:
type: Retrieval
dataset:
name: MTEB NQ
type: nq
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 37.828
- type: map_at_10
value: 53.239000000000004
- type: map_at_100
value: 54.035999999999994
- type: map_at_1000
value: 54.067
- type: map_at_3
value: 49.289
- type: map_at_5
value: 51.784
- type: mrr_at_1
value: 42.497
- type: mrr_at_10
value: 55.916999999999994
- type: mrr_at_100
value: 56.495
- type: mrr_at_1000
value: 56.516999999999996
- type: mrr_at_3
value: 52.800000000000004
- type: mrr_at_5
value: 54.722
- type: ndcg_at_1
value: 42.468
- type: ndcg_at_10
value: 60.437
- type: ndcg_at_100
value: 63.731
- type: ndcg_at_1000
value: 64.41799999999999
- type: ndcg_at_3
value: 53.230999999999995
- type: ndcg_at_5
value: 57.26
- type: precision_at_1
value: 42.468
- type: precision_at_10
value: 9.47
- type: precision_at_100
value: 1.1360000000000001
- type: precision_at_1000
value: 0.12
- type: precision_at_3
value: 23.724999999999998
- type: precision_at_5
value: 16.593
- type: recall_at_1
value: 37.828
- type: recall_at_10
value: 79.538
- type: recall_at_100
value: 93.646
- type: recall_at_1000
value: 98.72999999999999
- type: recall_at_3
value: 61.134
- type: recall_at_5
value: 70.377
- task:
type: Retrieval
dataset:
name: MTEB QuoraRetrieval
type: quora
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 70.548
- type: map_at_10
value: 84.466
- type: map_at_100
value: 85.10600000000001
- type: map_at_1000
value: 85.123
- type: map_at_3
value: 81.57600000000001
- type: map_at_5
value: 83.399
- type: mrr_at_1
value: 81.24
- type: mrr_at_10
value: 87.457
- type: mrr_at_100
value: 87.574
- type: mrr_at_1000
value: 87.575
- type: mrr_at_3
value: 86.507
- type: mrr_at_5
value: 87.205
- type: ndcg_at_1
value: 81.25
- type: ndcg_at_10
value: 88.203
- type: ndcg_at_100
value: 89.457
- type: ndcg_at_1000
value: 89.563
- type: ndcg_at_3
value: 85.465
- type: ndcg_at_5
value: 87.007
- type: precision_at_1
value: 81.25
- type: precision_at_10
value: 13.373
- type: precision_at_100
value: 1.5270000000000001
- type: precision_at_1000
value: 0.157
- type: precision_at_3
value: 37.417
- type: precision_at_5
value: 24.556
- type: recall_at_1
value: 70.548
- type: recall_at_10
value: 95.208
- type: recall_at_100
value: 99.514
- type: recall_at_1000
value: 99.988
- type: recall_at_3
value: 87.214
- type: recall_at_5
value: 91.696
- task:
type: Clustering
dataset:
name: MTEB RedditClustering
type: mteb/reddit-clustering
config: default
split: test
revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
metrics:
- type: v_measure
value: 53.04822095496839
- task:
type: Clustering
dataset:
name: MTEB RedditClusteringP2P
type: mteb/reddit-clustering-p2p
config: default
split: test
revision: 282350215ef01743dc01b456c7f5241fa8937f16
metrics:
- type: v_measure
value: 60.30778476474675
- task:
type: Retrieval
dataset:
name: MTEB SCIDOCS
type: scidocs
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 4.692
- type: map_at_10
value: 11.766
- type: map_at_100
value: 13.904
- type: map_at_1000
value: 14.216999999999999
- type: map_at_3
value: 8.245
- type: map_at_5
value: 9.92
- type: mrr_at_1
value: 23.0
- type: mrr_at_10
value: 33.78
- type: mrr_at_100
value: 34.922
- type: mrr_at_1000
value: 34.973
- type: mrr_at_3
value: 30.2
- type: mrr_at_5
value: 32.565
- type: ndcg_at_1
value: 23.0
- type: ndcg_at_10
value: 19.863
- type: ndcg_at_100
value: 28.141
- type: ndcg_at_1000
value: 33.549
- type: ndcg_at_3
value: 18.434
- type: ndcg_at_5
value: 16.384
- type: precision_at_1
value: 23.0
- type: precision_at_10
value: 10.39
- type: precision_at_100
value: 2.235
- type: precision_at_1000
value: 0.35300000000000004
- type: precision_at_3
value: 17.133000000000003
- type: precision_at_5
value: 14.44
- type: recall_at_1
value: 4.692
- type: recall_at_10
value: 21.025
- type: recall_at_100
value: 45.324999999999996
- type: recall_at_1000
value: 71.675
- type: recall_at_3
value: 10.440000000000001
- type: recall_at_5
value: 14.64
- task:
type: STS
dataset:
name: MTEB SICK-R
type: mteb/sickr-sts
config: default
split: test
revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
metrics:
- type: cos_sim_pearson
value: 84.96178184892842
- type: cos_sim_spearman
value: 79.6487740813199
- type: euclidean_pearson
value: 82.06661161625023
- type: euclidean_spearman
value: 79.64876769031183
- type: manhattan_pearson
value: 82.07061164575131
- type: manhattan_spearman
value: 79.65197039464537
- task:
type: STS
dataset:
name: MTEB STS12
type: mteb/sts12-sts
config: default
split: test
revision: a0d554a64d88156834ff5ae9920b964011b16384
metrics:
- type: cos_sim_pearson
value: 84.15305604100027
- type: cos_sim_spearman
value: 74.27447427941591
- type: euclidean_pearson
value: 80.52737337565307
- type: euclidean_spearman
value: 74.27416077132192
- type: manhattan_pearson
value: 80.53728571140387
- type: manhattan_spearman
value: 74.28853605753457
- task:
type: STS
dataset:
name: MTEB STS13
type: mteb/sts13-sts
config: default
split: test
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
metrics:
- type: cos_sim_pearson
value: 83.44386080639279
- type: cos_sim_spearman
value: 84.17947648159536
- type: euclidean_pearson
value: 83.34145388129387
- type: euclidean_spearman
value: 84.17947648159536
- type: manhattan_pearson
value: 83.30699061927966
- type: manhattan_spearman
value: 84.18125737380451
- task:
type: STS
dataset:
name: MTEB STS14
type: mteb/sts14-sts
config: default
split: test
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
metrics:
- type: cos_sim_pearson
value: 81.57392220985612
- type: cos_sim_spearman
value: 78.80745014464101
- type: euclidean_pearson
value: 80.01660371487199
- type: euclidean_spearman
value: 78.80741240102256
- type: manhattan_pearson
value: 79.96810779507953
- type: manhattan_spearman
value: 78.75600400119448
- task:
type: STS
dataset:
name: MTEB STS15
type: mteb/sts15-sts
config: default
split: test
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
metrics:
- type: cos_sim_pearson
value: 86.85421063026625
- type: cos_sim_spearman
value: 87.55320285299192
- type: euclidean_pearson
value: 86.69750143323517
- type: euclidean_spearman
value: 87.55320284326378
- type: manhattan_pearson
value: 86.63379169960379
- type: manhattan_spearman
value: 87.4815029877984
- task:
type: STS
dataset:
name: MTEB STS16
type: mteb/sts16-sts
config: default
split: test
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
metrics:
- type: cos_sim_pearson
value: 84.31314130411842
- type: cos_sim_spearman
value: 85.3489588181433
- type: euclidean_pearson
value: 84.13240933463535
- type: euclidean_spearman
value: 85.34902871403281
- type: manhattan_pearson
value: 84.01183086503559
- type: manhattan_spearman
value: 85.19316703166102
- task:
type: STS
dataset:
name: MTEB STS17 (en-en)
type: mteb/sts17-crosslingual-sts
config: en-en
split: test
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
metrics:
- type: cos_sim_pearson
value: 89.09979781689536
- type: cos_sim_spearman
value: 88.87813323759015
- type: euclidean_pearson
value: 88.65413031123792
- type: euclidean_spearman
value: 88.87813323759015
- type: manhattan_pearson
value: 88.61818758256024
- type: manhattan_spearman
value: 88.81044100494604
- task:
type: STS
dataset:
name: MTEB STS22 (en)
type: mteb/sts22-crosslingual-sts
config: en
split: test
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
metrics:
- type: cos_sim_pearson
value: 62.30693258111531
- type: cos_sim_spearman
value: 62.195516523251946
- type: euclidean_pearson
value: 62.951283701049476
- type: euclidean_spearman
value: 62.195516523251946
- type: manhattan_pearson
value: 63.068322281439535
- type: manhattan_spearman
value: 62.10621171028406
- task:
type: STS
dataset:
name: MTEB STSBenchmark
type: mteb/stsbenchmark-sts
config: default
split: test
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
metrics:
- type: cos_sim_pearson
value: 84.27092833763909
- type: cos_sim_spearman
value: 84.84429717949759
- type: euclidean_pearson
value: 84.8516966060792
- type: euclidean_spearman
value: 84.84429717949759
- type: manhattan_pearson
value: 84.82203139242881
- type: manhattan_spearman
value: 84.8358503952945
- task:
type: Reranking
dataset:
name: MTEB SciDocsRR
type: mteb/scidocs-reranking
config: default
split: test
revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
metrics:
- type: map
value: 83.10290863981409
- type: mrr
value: 95.31168450286097
- task:
type: Retrieval
dataset:
name: MTEB SciFact
type: scifact
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 52.161
- type: map_at_10
value: 62.138000000000005
- type: map_at_100
value: 62.769
- type: map_at_1000
value: 62.812
- type: map_at_3
value: 59.111000000000004
- type: map_at_5
value: 60.995999999999995
- type: mrr_at_1
value: 55.333
- type: mrr_at_10
value: 63.504000000000005
- type: mrr_at_100
value: 64.036
- type: mrr_at_1000
value: 64.08
- type: mrr_at_3
value: 61.278
- type: mrr_at_5
value: 62.778
- type: ndcg_at_1
value: 55.333
- type: ndcg_at_10
value: 66.678
- type: ndcg_at_100
value: 69.415
- type: ndcg_at_1000
value: 70.453
- type: ndcg_at_3
value: 61.755
- type: ndcg_at_5
value: 64.546
- type: precision_at_1
value: 55.333
- type: precision_at_10
value: 9.033
- type: precision_at_100
value: 1.043
- type: precision_at_1000
value: 0.11199999999999999
- type: precision_at_3
value: 24.221999999999998
- type: precision_at_5
value: 16.333000000000002
- type: recall_at_1
value: 52.161
- type: recall_at_10
value: 79.156
- type: recall_at_100
value: 91.333
- type: recall_at_1000
value: 99.333
- type: recall_at_3
value: 66.43299999999999
- type: recall_at_5
value: 73.272
- task:
type: PairClassification
dataset:
name: MTEB SprintDuplicateQuestions
type: mteb/sprintduplicatequestions-pairclassification
config: default
split: test
revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
metrics:
- type: cos_sim_accuracy
value: 99.81287128712871
- type: cos_sim_ap
value: 95.30034785910676
- type: cos_sim_f1
value: 90.28629856850716
- type: cos_sim_precision
value: 92.36401673640168
- type: cos_sim_recall
value: 88.3
- type: dot_accuracy
value: 99.81287128712871
- type: dot_ap
value: 95.30034785910676
- type: dot_f1
value: 90.28629856850716
- type: dot_precision
value: 92.36401673640168
- type: dot_recall
value: 88.3
- type: euclidean_accuracy
value: 99.81287128712871
- type: euclidean_ap
value: 95.30034785910676
- type: euclidean_f1
value: 90.28629856850716
- type: euclidean_precision
value: 92.36401673640168
- type: euclidean_recall
value: 88.3
- type: manhattan_accuracy
value: 99.80990099009901
- type: manhattan_ap
value: 95.26880751950654
- type: manhattan_f1
value: 90.22177419354838
- type: manhattan_precision
value: 90.95528455284553
- type: manhattan_recall
value: 89.5
- type: max_accuracy
value: 99.81287128712871
- type: max_ap
value: 95.30034785910676
- type: max_f1
value: 90.28629856850716
- task:
type: Clustering
dataset:
name: MTEB StackExchangeClustering
type: mteb/stackexchange-clustering
config: default
split: test
revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
metrics:
- type: v_measure
value: 58.518662504351184
- task:
type: Clustering
dataset:
name: MTEB StackExchangeClusteringP2P
type: mteb/stackexchange-clustering-p2p
config: default
split: test
revision: 815ca46b2622cec33ccafc3735d572c266efdb44
metrics:
- type: v_measure
value: 34.96168178378587
- task:
type: Reranking
dataset:
name: MTEB StackOverflowDupQuestions
type: mteb/stackoverflowdupquestions-reranking
config: default
split: test
revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
metrics:
- type: map
value: 52.04862593471896
- type: mrr
value: 52.97238402936932
- task:
type: Summarization
dataset:
name: MTEB SummEval
type: mteb/summeval
config: default
split: test
revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
metrics:
- type: cos_sim_pearson
value: 30.092545236479946
- type: cos_sim_spearman
value: 31.599851000175498
- type: dot_pearson
value: 30.092542723901676
- type: dot_spearman
value: 31.599851000175498
- task:
type: Retrieval
dataset:
name: MTEB TRECCOVID
type: trec-covid
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 0.189
- type: map_at_10
value: 1.662
- type: map_at_100
value: 9.384
- type: map_at_1000
value: 22.669
- type: map_at_3
value: 0.5559999999999999
- type: map_at_5
value: 0.9039999999999999
- type: mrr_at_1
value: 68.0
- type: mrr_at_10
value: 81.01899999999999
- type: mrr_at_100
value: 81.01899999999999
- type: mrr_at_1000
value: 81.01899999999999
- type: mrr_at_3
value: 79.333
- type: mrr_at_5
value: 80.733
- type: ndcg_at_1
value: 63.0
- type: ndcg_at_10
value: 65.913
- type: ndcg_at_100
value: 51.895
- type: ndcg_at_1000
value: 46.967
- type: ndcg_at_3
value: 65.49199999999999
- type: ndcg_at_5
value: 66.69699999999999
- type: precision_at_1
value: 68.0
- type: precision_at_10
value: 71.6
- type: precision_at_100
value: 53.66
- type: precision_at_1000
value: 21.124000000000002
- type: precision_at_3
value: 72.667
- type: precision_at_5
value: 74.0
- type: recall_at_1
value: 0.189
- type: recall_at_10
value: 1.913
- type: recall_at_100
value: 12.601999999999999
- type: recall_at_1000
value: 44.296
- type: recall_at_3
value: 0.605
- type: recall_at_5
value: 1.018
- task:
type: Retrieval
dataset:
name: MTEB Touche2020
type: webis-touche2020
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 2.701
- type: map_at_10
value: 10.445
- type: map_at_100
value: 17.324
- type: map_at_1000
value: 19.161
- type: map_at_3
value: 5.497
- type: map_at_5
value: 7.278
- type: mrr_at_1
value: 30.612000000000002
- type: mrr_at_10
value: 45.534
- type: mrr_at_100
value: 45.792
- type: mrr_at_1000
value: 45.806999999999995
- type: mrr_at_3
value: 37.755
- type: mrr_at_5
value: 43.469
- type: ndcg_at_1
value: 26.531
- type: ndcg_at_10
value: 26.235000000000003
- type: ndcg_at_100
value: 39.17
- type: ndcg_at_1000
value: 51.038
- type: ndcg_at_3
value: 23.625
- type: ndcg_at_5
value: 24.338
- type: precision_at_1
value: 30.612000000000002
- type: precision_at_10
value: 24.285999999999998
- type: precision_at_100
value: 8.224
- type: precision_at_1000
value: 1.6179999999999999
- type: precision_at_3
value: 24.490000000000002
- type: precision_at_5
value: 24.898
- type: recall_at_1
value: 2.701
- type: recall_at_10
value: 17.997
- type: recall_at_100
value: 51.766999999999996
- type: recall_at_1000
value: 87.863
- type: recall_at_3
value: 6.295000000000001
- type: recall_at_5
value: 9.993
- task:
type: Classification
dataset:
name: MTEB ToxicConversationsClassification
type: mteb/toxic_conversations_50k
config: default
split: test
revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
metrics:
- type: accuracy
value: 73.3474
- type: ap
value: 15.393431414459924
- type: f1
value: 56.466681887882416
- task:
type: Classification
dataset:
name: MTEB TweetSentimentExtractionClassification
type: mteb/tweet_sentiment_extraction
config: default
split: test
revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
metrics:
- type: accuracy
value: 62.062818336163
- type: f1
value: 62.11230840463252
- task:
type: Clustering
dataset:
name: MTEB TwentyNewsgroupsClustering
type: mteb/twentynewsgroups-clustering
config: default
split: test
revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
metrics:
- type: v_measure
value: 42.464892820845115
- task:
type: PairClassification
dataset:
name: MTEB TwitterSemEval2015
type: mteb/twittersemeval2015-pairclassification
config: default
split: test
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
metrics:
- type: cos_sim_accuracy
value: 86.15962329379508
- type: cos_sim_ap
value: 74.73674057919256
- type: cos_sim_f1
value: 68.81245642574947
- type: cos_sim_precision
value: 61.48255813953488
- type: cos_sim_recall
value: 78.12664907651715
- type: dot_accuracy
value: 86.15962329379508
- type: dot_ap
value: 74.7367634988281
- type: dot_f1
value: 68.81245642574947
- type: dot_precision
value: 61.48255813953488
- type: dot_recall
value: 78.12664907651715
- type: euclidean_accuracy
value: 86.15962329379508
- type: euclidean_ap
value: 74.7367761466634
- type: euclidean_f1
value: 68.81245642574947
- type: euclidean_precision
value: 61.48255813953488
- type: euclidean_recall
value: 78.12664907651715
- type: manhattan_accuracy
value: 86.21326816474935
- type: manhattan_ap
value: 74.64416473733951
- type: manhattan_f1
value: 68.80924855491331
- type: manhattan_precision
value: 61.23456790123457
- type: manhattan_recall
value: 78.52242744063325
- type: max_accuracy
value: 86.21326816474935
- type: max_ap
value: 74.7367761466634
- type: max_f1
value: 68.81245642574947
- task:
type: PairClassification
dataset:
name: MTEB TwitterURLCorpus
type: mteb/twitterurlcorpus-pairclassification
config: default
split: test
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
metrics:
- type: cos_sim_accuracy
value: 88.97620988085536
- type: cos_sim_ap
value: 86.08680845745758
- type: cos_sim_f1
value: 78.02793637114438
- type: cos_sim_precision
value: 73.11082699683736
- type: cos_sim_recall
value: 83.65414228518632
- type: dot_accuracy
value: 88.97620988085536
- type: dot_ap
value: 86.08681149437946
- type: dot_f1
value: 78.02793637114438
- type: dot_precision
value: 73.11082699683736
- type: dot_recall
value: 83.65414228518632
- type: euclidean_accuracy
value: 88.97620988085536
- type: euclidean_ap
value: 86.08681215460771
- type: euclidean_f1
value: 78.02793637114438
- type: euclidean_precision
value: 73.11082699683736
- type: euclidean_recall
value: 83.65414228518632
- type: manhattan_accuracy
value: 88.88888888888889
- type: manhattan_ap
value: 86.02916327562438
- type: manhattan_f1
value: 78.02063045516843
- type: manhattan_precision
value: 73.38851947346994
- type: manhattan_recall
value: 83.2768709578072
- type: max_accuracy
value: 88.97620988085536
- type: max_ap
value: 86.08681215460771
- type: max_f1
value: 78.02793637114438
---
# ngxson/jina-embeddings-v2-base-en-Q8_0-GGUF
This model was converted to GGUF format from [`jinaai/jina-embeddings-v2-base-en`](https://huggingface.co/jinaai/jina-embeddings-v2-base-en) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/jinaai/jina-embeddings-v2-base-en) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo ngxson/jina-embeddings-v2-base-en-Q8_0-GGUF --hf-file jina-embeddings-v2-base-en-q8_0.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo ngxson/jina-embeddings-v2-base-en-Q8_0-GGUF --hf-file jina-embeddings-v2-base-en-q8_0.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo ngxson/jina-embeddings-v2-base-en-Q8_0-GGUF --hf-file jina-embeddings-v2-base-en-q8_0.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo ngxson/jina-embeddings-v2-base-en-Q8_0-GGUF --hf-file jina-embeddings-v2-base-en-q8_0.gguf -c 2048
```