File size: 5,873 Bytes
0495e49 6c8c407 0495e49 6c8c407 0495e49 6c8c407 0495e49 6c8c407 0495e49 6c8c407 0495e49 6c8c407 0495e49 6c8c407 0495e49 de343a2 0495e49 6c8c407 de343a2 0495e49 6c8c407 0495e49 6c8c407 0495e49 de343a2 6c8c407 de343a2 6c8c407 0495e49 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 |
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"id": "a41f141c-b6a8-40d1-b72d-127d028c0592",
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"from transformers import AutoModelForCausalLM, AutoTokenizer\n",
"\n",
"model_path = os.getcwd()\n",
"print(model_path)\n",
"tokenizer = AutoTokenizer.from_pretrained(model_path, legacy=False)\n",
"model = AutoModelForCausalLM.from_pretrained(model_path, use_safetensors=True, local_files_only=True)\n",
"tokenizer.pad_token = tokenizer.eos_token"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "93e9ec6a-4a57-484f-a1a5-ecb6674e8f77",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"LlamaTokenizerFast(name_or_path='/var/home/ngxson/jupyter/stories-15M', vocab_size=32000, model_max_length=2048, is_fast=True, padding_side='left', truncation_side='right', special_tokens={'bos_token': '<s>', 'eos_token': '</s>', 'unk_token': '<unk>'}, clean_up_tokenization_spaces=False), added_tokens_decoder={\n",
"\t0: AddedToken(\"<unk>\", rstrip=False, lstrip=False, single_word=False, normalized=True, special=True),\n",
"\t1: AddedToken(\"<s>\", rstrip=False, lstrip=False, single_word=False, normalized=True, special=True),\n",
"\t2: AddedToken(\"</s>\", rstrip=False, lstrip=False, single_word=False, normalized=True, special=True),\n",
"}"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#inputs = tokenizer('', return_tensors=\"pt\")\n",
"#outputs = model.generate(inputs['input_ids'], max_new_tokens=20, temperature=0)\n",
"#print(tokenizer.decode(outputs[0], skip_special_tokens=True))\n",
"\n",
"tokenizer"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e570b6db-efa8-4c9f-ac71-573479b00711",
"metadata": {},
"outputs": [],
"source": [
"model.gradient_checkpointing_enable()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "9345e74b-5bef-4cc9-982e-342af69b290a",
"metadata": {},
"outputs": [],
"source": [
"from peft import LoraConfig, get_peft_model\n",
"\n",
"peft_config = LoraConfig(\n",
" r=64,\n",
" lora_alpha=128,\n",
" target_modules=[\n",
" \"q_proj\",\n",
" \"k_proj\",\n",
" \"v_proj\",\n",
" \"o_proj\",\n",
" \"w1\",\n",
" \"w2\",\n",
" \"w3\",\n",
" \"lm_head\",\n",
" ],\n",
" bias=\"none\",\n",
" lora_dropout=0.05, # Conventional\n",
" task_type=\"CAUSAL_LM\",\n",
")\n",
"\n",
"model = get_peft_model(model, peft_config)\n",
"model.print_trainable_parameters()\n",
"\n",
"#print(model)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b43aec47-5fa4-48c9-8e57-9c6b233b9c7e",
"metadata": {},
"outputs": [],
"source": [
"def split_and_trim(text):\n",
" paragraphs = text.strip().split('\\n\\n')\n",
" trimmed_paragraphs = []\n",
" for para in paragraphs:\n",
" trimmed_lines = [line.lstrip() for line in para.split('\\n')]\n",
" trimmed_paragraphs.append('\\n'.join(trimmed_lines))\n",
"\n",
" return trimmed_paragraphs\n",
"\n",
"with open(\"data.txt\", \"r\") as f:\n",
" content = f.read()\n",
" dataset = split_and_trim(content)\n",
" tokenized_train_dataset = [\n",
" tokenizer(content)['input_ids'] for content in dataset\n",
" ]\n",
"#tokenized_train_dataset"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "09dd4848-9c7a-4a3b-9887-59652c915cc3",
"metadata": {},
"outputs": [],
"source": [
"import transformers\n",
"from datetime import datetime\n",
"\n",
"project = \"moe_shakespeare15M\"\n",
"run_name = project\n",
"output_dir = \"./\" + run_name\n",
"\n",
"tokenizer.pad_token = tokenizer.eos_token\n",
"\n",
"checkpointing_args = {\"use_reentrant\": False}\n",
"trainer = transformers.Trainer(\n",
" model=model,\n",
" train_dataset=tokenized_train_dataset,\n",
" args=transformers.TrainingArguments(\n",
" output_dir=output_dir,\n",
" warmup_steps=100,\n",
" per_device_train_batch_size=50,\n",
" gradient_accumulation_steps=5,\n",
" gradient_checkpointing=True,\n",
" max_steps=500,\n",
" learning_rate=2.5e-5, # Want a small lr for finetuning\n",
" # fp16=True, \n",
" optim=\"adamw_torch\",\n",
" save_strategy=\"steps\",\n",
" save_steps=100,\n",
" logging_steps=20,\n",
" save_total_limit=4,\n",
" report_to=\"none\", \n",
" run_name=f\"{run_name}-{datetime.now().strftime('%Y-%m-%d-%H-%M')}\"\n",
" ),\n",
" data_collator=transformers.DataCollatorForLanguageModeling(tokenizer, mlm=False),\n",
")\n",
"\n",
"model.config.use_cache = False # silence the warnings. Please re-enable for inference!\n",
"trainer.train()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "7f0ad783-3f3e-4812-bc4e-026f9aad1435",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.12"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|