metadata
language:
- ro
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- whisper-event
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
model-index:
- name: Whisper Tiny RO - Georgescu Dumitru
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 11.0
type: mozilla-foundation/common_voice_11_0
config: ro
split: test
args: ro
metrics:
- name: Wer
type: wer
value: 100.5201330408322
Whisper Tiny RO - Georgescu Dumitru
This model is a fine-tuned version of openai/whisper-tiny on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set:
- Loss: 0.8465
- Wer: 100.5201
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 64
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.0437 | 12.0032 | 1000 | 0.6372 | 125.1044 |
0.0037 | 24.0064 | 2000 | 0.7549 | 107.4234 |
0.0016 | 36.0096 | 3000 | 0.8043 | 101.3233 |
0.001 | 48.0128 | 4000 | 0.8338 | 101.0297 |
0.0008 | 60.016 | 5000 | 0.8465 | 100.5201 |
Framework versions
- Transformers 4.42.0.dev0
- Pytorch 2.3.0+cu121
- Datasets 2.19.2.dev0
- Tokenizers 0.19.1