File size: 6,020 Bytes
e7c153b bc21e8a e7c153b bc21e8a e7c153b bc21e8a e7c153b bc21e8a e7c153b bc21e8a e7c153b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#Pre-processamento dei dati il metodo riceve in input una stringa e ne restituisce il suo pre-processamento\n",
"from nltk.tokenize import word_tokenize\n",
"from nltk.corpus import stopwords\n",
"from nltk.stem import WordNetLemmatizer\n",
"import string\n",
"\n",
"def preprocess_text(text):\n",
" #Lower text\n",
" tokens = word_tokenize(text.lower())\n",
" #Rimozione stop words\n",
" filtered_tokens = [token for token in tokens if token not in stopwords.words('italian')]\n",
" #Lemmatizzazione\n",
" lemmatizer = WordNetLemmatizer()\n",
" lemmatized_tokens = [lemmatizer.lemmatize(token) for token in filtered_tokens]\n",
" #Join lemmatizzazione del testo\n",
" processed_text = ' '.join(lemmatized_tokens)\n",
" #Eliminazione punteggiatura\n",
" return processed_text.translate(str.maketrans('','', string.punctuation))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#Importazione del dataframe\n",
"import pandas as pd\n",
"\n",
"#Dataset ngt\n",
"df_ngt = pd.read_csv('ngt_sentiment_dataset/ngt_lang_dataset.csv')\n",
"\n",
"print(df_ngt.describe())\n",
"\n",
"X_ngt = df_ngt.text.apply(preprocess_text)\n",
"y_ngt = df_ngt.tag\n",
"\n",
"print(X_ngt[0])\n",
"print(y_ngt[0])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#Vettorizzazione del testo tramite tokenizzazione\n",
"from keras.preprocessing.text import Tokenizer\n",
"from keras.preprocessing.sequence import pad_sequences\n",
"import numpy as np\n",
"from sklearn.model_selection import train_test_split\n",
"\n",
"maxlen = 100\n",
"max_words = 10000\n",
"\n",
"tokenizer = Tokenizer(num_words=max_words)\n",
"tokenizer.fit_on_texts(X_ngt)\n",
"sequences = tokenizer.texts_to_sequences(X_ngt)\n",
"word_index = tokenizer.word_index\n",
"print('Found %s unique tokens' % len(word_index))\n",
"\n",
"X_ngt = pad_sequences(sequences, maxlen=maxlen)\n",
"\n",
"y_ngt = np.asarray(y_ngt)\n",
"\n",
"indices = np.arange(X_ngt.shape[0])\n",
"\n",
"np.random.shuffle(indices)\n",
"X_ngt = X_ngt[indices]\n",
"y_ngt = y_ngt[indices]\n",
"\n",
"X_train, X_test, y_train, y_test = train_test_split(X_ngt, y_ngt, test_size=0.2, shuffle=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(X_train[0])\n",
"print(y_train[0])\n",
"\n",
"print(X_test[0])\n",
"print(y_test[0])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from keras.models import Sequential\n",
"from keras.layers import Dense\n",
"\n",
"model = Sequential()\n",
"\n",
"model.add(Dense(512, activation='relu'))\n",
"model.add(Dense(32, activation='relu'))\n",
"model.add(Dense(1, activation='sigmoid'))\n",
"\n",
"model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['acc'])\n",
"\n",
"history = model.fit(X_train, y_train, epochs=10, batch_size=32, validation_data=(X_test, y_test))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"model.summary()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#Tracciamento dei risultati\n",
"import matplotlib.pyplot as plt\n",
"\n",
"acc = history.history['acc']\n",
"val_acc = history.history['val_acc']\n",
"loss = history.history['loss']\n",
"val_loss = history.history['val_loss']\n",
"\n",
"epochs = range(1, len(acc) + 1)\n",
"\n",
"plt.plot(epochs, acc, 'bo', label='Training acc')\n",
"plt.plot(epochs, val_acc, 'b', label='Validation acc')\n",
"plt.title('Training and validation accuracy')\n",
"plt.legend()\n",
"\n",
"plt.figure()\n",
"\n",
"plt.plot(epochs, loss, 'bo', label='Training loss')\n",
"plt.plot(epochs, val_loss, 'b', label='Validation loss')\n",
"plt.title('Training and validation loss')\n",
"plt.legend()\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"\n",
"#Salvataggio del modello\n",
"model.save('model.keras')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#Test\n",
"\n",
"#Load model\n",
"from keras.models import load_model\n",
"from keras.preprocessing.sequence import pad_sequences\n",
"from keras.preprocessing.text import Tokenizer\n",
"\n",
"loaded_model = load_model('model.keras')\n",
"\n",
"sentence = input(\"Enter the sentence: \")\n",
"sequence = preprocess_text(sentence)\n",
"sequence = Tokenizer().texts_to_sequences([sequence])\n",
"test = pad_sequences(sequence, maxlen=100)\n",
"yhat = loaded_model.predict(test)\n",
"\n",
"threshold = 0.5\n",
"\n",
"if yhat > threshold:\n",
" print('POSITIVO', int((yhat)*100), '%')\n",
"else:\n",
" print('NEGATIVO', int((1-yhat)*100), '%')"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "2.7.18"
},
"orig_nbformat": 4
},
"nbformat": 4,
"nbformat_minor": 2
}
|