placeholder / README.md
giulio98's picture
Create README.md
127dcfb verified
metadata
tags:
  - mteb
model-index:
  - name: bge_finetuned
    results:
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_counterfactual
          name: MTEB AmazonCounterfactualClassification (en)
          config: en
          split: test
          revision: e8379541af4e31359cca9fbcf4b00f2671dba205
        metrics:
          - type: accuracy
            value: 61.64179104477612
          - type: ap
            value: 25.20497978200253
          - type: f1
            value: 55.51169205110252
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_polarity
          name: MTEB AmazonPolarityClassification
          config: default
          split: test
          revision: e2d317d38cd51312af73b3d32a06d1a08b442046
        metrics:
          - type: accuracy
            value: 58.6114
          - type: ap
            value: 55.013881977883706
          - type: f1
            value: 58.0798269108889
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_reviews_multi
          name: MTEB AmazonReviewsClassification (en)
          config: en
          split: test
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
        metrics:
          - type: accuracy
            value: 27.009999999999994
          - type: f1
            value: 26.230644551993027
      - task:
          type: Retrieval
        dataset:
          type: arguana
          name: MTEB ArguAna
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 14.011000000000001
          - type: map_at_10
            value: 24.082
          - type: map_at_100
            value: 25.273
          - type: map_at_1000
            value: 25.336
          - type: map_at_3
            value: 20.341
          - type: map_at_5
            value: 22.155
          - type: mrr_at_1
            value: 14.651
          - type: mrr_at_10
            value: 24.306
          - type: mrr_at_100
            value: 25.503999999999998
          - type: mrr_at_1000
            value: 25.566
          - type: mrr_at_3
            value: 20.59
          - type: mrr_at_5
            value: 22.400000000000002
          - type: ndcg_at_1
            value: 14.011000000000001
          - type: ndcg_at_10
            value: 30.316
          - type: ndcg_at_100
            value: 36.146
          - type: ndcg_at_1000
            value: 37.972
          - type: ndcg_at_3
            value: 22.422
          - type: ndcg_at_5
            value: 25.727
          - type: precision_at_1
            value: 14.011000000000001
          - type: precision_at_10
            value: 5.0569999999999995
          - type: precision_at_100
            value: 0.7799999999999999
          - type: precision_at_1000
            value: 0.093
          - type: precision_at_3
            value: 9.483
          - type: precision_at_5
            value: 7.312
          - type: recall_at_1
            value: 14.011000000000001
          - type: recall_at_10
            value: 50.568999999999996
          - type: recall_at_100
            value: 77.952
          - type: recall_at_1000
            value: 92.674
          - type: recall_at_3
            value: 28.449999999999996
          - type: recall_at_5
            value: 36.558
      - task:
          type: Clustering
        dataset:
          type: mteb/arxiv-clustering-p2p
          name: MTEB ArxivClusteringP2P
          config: default
          split: test
          revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
        metrics:
          - type: v_measure
            value: 21.580787107217457
      - task:
          type: Clustering
        dataset:
          type: mteb/arxiv-clustering-s2s
          name: MTEB ArxivClusteringS2S
          config: default
          split: test
          revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
        metrics:
          - type: v_measure
            value: 12.755947651867459
      - task:
          type: Reranking
        dataset:
          type: mteb/askubuntudupquestions-reranking
          name: MTEB AskUbuntuDupQuestions
          config: default
          split: test
          revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
        metrics:
          - type: map
            value: 50.36895415359604
          - type: mrr
            value: 62.93244075100032
      - task:
          type: STS
        dataset:
          type: mteb/biosses-sts
          name: MTEB BIOSSES
          config: default
          split: test
          revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
        metrics:
          - type: cos_sim_pearson
            value: 54.84190098866484
          - type: cos_sim_spearman
            value: 52.065644182348144
          - type: euclidean_pearson
            value: 54.181073661388034
          - type: euclidean_spearman
            value: 52.065644182348144
          - type: manhattan_pearson
            value: 54.98368207013862
          - type: manhattan_spearman
            value: 53.66387337016872
      - task:
          type: Classification
        dataset:
          type: mteb/banking77
          name: MTEB Banking77Classification
          config: default
          split: test
          revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
        metrics:
          - type: accuracy
            value: 63.48051948051948
          - type: f1
            value: 61.45740352513437
      - task:
          type: Clustering
        dataset:
          type: mteb/biorxiv-clustering-p2p
          name: MTEB BiorxivClusteringP2P
          config: default
          split: test
          revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
        metrics:
          - type: v_measure
            value: 16.23123129183937
      - task:
          type: Clustering
        dataset:
          type: mteb/biorxiv-clustering-s2s
          name: MTEB BiorxivClusteringS2S
          config: default
          split: test
          revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
        metrics:
          - type: v_measure
            value: 6.846095550717324
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackAndroidRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 14.587
          - type: map_at_10
            value: 20.032
          - type: map_at_100
            value: 21.2
          - type: map_at_1000
            value: 21.351
          - type: map_at_3
            value: 18.224
          - type: map_at_5
            value: 19.028
          - type: mrr_at_1
            value: 18.312
          - type: mrr_at_10
            value: 24.343999999999998
          - type: mrr_at_100
            value: 25.302000000000003
          - type: mrr_at_1000
            value: 25.385
          - type: mrr_at_3
            value: 22.461000000000002
          - type: mrr_at_5
            value: 23.219
          - type: ndcg_at_1
            value: 18.312
          - type: ndcg_at_10
            value: 24.05
          - type: ndcg_at_100
            value: 29.512
          - type: ndcg_at_1000
            value: 33.028999999999996
          - type: ndcg_at_3
            value: 20.947
          - type: ndcg_at_5
            value: 21.807000000000002
          - type: precision_at_1
            value: 18.312
          - type: precision_at_10
            value: 4.664
          - type: precision_at_100
            value: 0.9570000000000001
          - type: precision_at_1000
            value: 0.155
          - type: precision_at_3
            value: 10.11
          - type: precision_at_5
            value: 7.066999999999999
          - type: recall_at_1
            value: 14.587
          - type: recall_at_10
            value: 31.865
          - type: recall_at_100
            value: 55.922000000000004
          - type: recall_at_1000
            value: 80.878
          - type: recall_at_3
            value: 22.229
          - type: recall_at_5
            value: 25.09
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackEnglishRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 8.456
          - type: map_at_10
            value: 11.429
          - type: map_at_100
            value: 11.956
          - type: map_at_1000
            value: 12.04
          - type: map_at_3
            value: 10.309
          - type: map_at_5
            value: 11.006
          - type: mrr_at_1
            value: 10.637
          - type: mrr_at_10
            value: 14.047
          - type: mrr_at_100
            value: 14.591999999999999
          - type: mrr_at_1000
            value: 14.66
          - type: mrr_at_3
            value: 12.876999999999999
          - type: mrr_at_5
            value: 13.644
          - type: ndcg_at_1
            value: 10.637
          - type: ndcg_at_10
            value: 13.623
          - type: ndcg_at_100
            value: 16.337
          - type: ndcg_at_1000
            value: 18.881
          - type: ndcg_at_3
            value: 11.76
          - type: ndcg_at_5
            value: 12.803
          - type: precision_at_1
            value: 10.637
          - type: precision_at_10
            value: 2.611
          - type: precision_at_100
            value: 0.49899999999999994
          - type: precision_at_1000
            value: 0.08800000000000001
          - type: precision_at_3
            value: 5.7540000000000004
          - type: precision_at_5
            value: 4.306
          - type: recall_at_1
            value: 8.456
          - type: recall_at_10
            value: 17.543
          - type: recall_at_100
            value: 29.696
          - type: recall_at_1000
            value: 48.433
          - type: recall_at_3
            value: 12.299
          - type: recall_at_5
            value: 15.126000000000001
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackGamingRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 10.517999999999999
          - type: map_at_10
            value: 14.924999999999999
          - type: map_at_100
            value: 15.716
          - type: map_at_1000
            value: 15.804000000000002
          - type: map_at_3
            value: 13.228000000000002
          - type: map_at_5
            value: 14.155999999999999
          - type: mrr_at_1
            value: 12.790000000000001
          - type: mrr_at_10
            value: 17.122999999999998
          - type: mrr_at_100
            value: 17.874000000000002
          - type: mrr_at_1000
            value: 17.947
          - type: mrr_at_3
            value: 15.528
          - type: mrr_at_5
            value: 16.421
          - type: ndcg_at_1
            value: 12.790000000000001
          - type: ndcg_at_10
            value: 17.967
          - type: ndcg_at_100
            value: 22.016
          - type: ndcg_at_1000
            value: 24.57
          - type: ndcg_at_3
            value: 14.745
          - type: ndcg_at_5
            value: 16.247
          - type: precision_at_1
            value: 12.790000000000001
          - type: precision_at_10
            value: 3.229
          - type: precision_at_100
            value: 0.592
          - type: precision_at_1000
            value: 0.087
          - type: precision_at_3
            value: 6.792
          - type: precision_at_5
            value: 5.066
          - type: recall_at_1
            value: 10.517999999999999
          - type: recall_at_10
            value: 25.194
          - type: recall_at_100
            value: 43.858999999999995
          - type: recall_at_1000
            value: 63.410999999999994
          - type: recall_at_3
            value: 16.384999999999998
          - type: recall_at_5
            value: 20.09
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackGisRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 8.325000000000001
          - type: map_at_10
            value: 12.262
          - type: map_at_100
            value: 13.003
          - type: map_at_1000
            value: 13.126999999999999
          - type: map_at_3
            value: 10.946
          - type: map_at_5
            value: 11.581
          - type: mrr_at_1
            value: 9.379
          - type: mrr_at_10
            value: 13.527000000000001
          - type: mrr_at_100
            value: 14.249999999999998
          - type: mrr_at_1000
            value: 14.365
          - type: mrr_at_3
            value: 12.166
          - type: mrr_at_5
            value: 12.798000000000002
          - type: ndcg_at_1
            value: 9.379
          - type: ndcg_at_10
            value: 14.878
          - type: ndcg_at_100
            value: 19.17
          - type: ndcg_at_1000
            value: 22.861
          - type: ndcg_at_3
            value: 12.136
          - type: ndcg_at_5
            value: 13.209000000000001
          - type: precision_at_1
            value: 9.379
          - type: precision_at_10
            value: 2.5309999999999997
          - type: precision_at_100
            value: 0.505
          - type: precision_at_1000
            value: 0.086
          - type: precision_at_3
            value: 5.386
          - type: precision_at_5
            value: 3.887
          - type: recall_at_1
            value: 8.325000000000001
          - type: recall_at_10
            value: 21.886
          - type: recall_at_100
            value: 42.977
          - type: recall_at_1000
            value: 71.946
          - type: recall_at_3
            value: 14.123
          - type: recall_at_5
            value: 16.747
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackMathematicaRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 5.982
          - type: map_at_10
            value: 9.249
          - type: map_at_100
            value: 10
          - type: map_at_1000
            value: 10.127
          - type: map_at_3
            value: 7.913
          - type: map_at_5
            value: 8.540000000000001
          - type: mrr_at_1
            value: 7.960000000000001
          - type: mrr_at_10
            value: 11.703
          - type: mrr_at_100
            value: 12.43
          - type: mrr_at_1000
            value: 12.534999999999998
          - type: mrr_at_3
            value: 10.344000000000001
          - type: mrr_at_5
            value: 11.022
          - type: ndcg_at_1
            value: 7.960000000000001
          - type: ndcg_at_10
            value: 11.863
          - type: ndcg_at_100
            value: 16.086
          - type: ndcg_at_1000
            value: 19.738
          - type: ndcg_at_3
            value: 9.241000000000001
          - type: ndcg_at_5
            value: 10.228
          - type: precision_at_1
            value: 7.960000000000001
          - type: precision_at_10
            value: 2.4
          - type: precision_at_100
            value: 0.534
          - type: precision_at_1000
            value: 0.097
          - type: precision_at_3
            value: 4.561
          - type: precision_at_5
            value: 3.408
          - type: recall_at_1
            value: 5.982
          - type: recall_at_10
            value: 17.669999999999998
          - type: recall_at_100
            value: 37.261
          - type: recall_at_1000
            value: 64.416
          - type: recall_at_3
            value: 10.376000000000001
          - type: recall_at_5
            value: 12.933
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackPhysicsRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 9.068
          - type: map_at_10
            value: 12.101
          - type: map_at_100
            value: 12.828000000000001
          - type: map_at_1000
            value: 12.953000000000001
          - type: map_at_3
            value: 11.047
          - type: map_at_5
            value: 11.542
          - type: mrr_at_1
            value: 10.972
          - type: mrr_at_10
            value: 14.873
          - type: mrr_at_100
            value: 15.584000000000001
          - type: mrr_at_1000
            value: 15.681999999999999
          - type: mrr_at_3
            value: 13.523
          - type: mrr_at_5
            value: 14.254
          - type: ndcg_at_1
            value: 10.972
          - type: ndcg_at_10
            value: 14.557999999999998
          - type: ndcg_at_100
            value: 18.56
          - type: ndcg_at_1000
            value: 21.975
          - type: ndcg_at_3
            value: 12.436
          - type: ndcg_at_5
            value: 13.270999999999999
          - type: precision_at_1
            value: 10.972
          - type: precision_at_10
            value: 2.714
          - type: precision_at_100
            value: 0.5720000000000001
          - type: precision_at_1000
            value: 0.10200000000000001
          - type: precision_at_3
            value: 5.711
          - type: precision_at_5
            value: 4.1579999999999995
          - type: recall_at_1
            value: 9.068
          - type: recall_at_10
            value: 19.381999999999998
          - type: recall_at_100
            value: 37.602999999999994
          - type: recall_at_1000
            value: 62.376
          - type: recall_at_3
            value: 13.48
          - type: recall_at_5
            value: 15.506
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackProgrammersRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 8.206
          - type: map_at_10
            value: 12.032
          - type: map_at_100
            value: 12.992
          - type: map_at_1000
            value: 13.135
          - type: map_at_3
            value: 10.741
          - type: map_at_5
            value: 11.392
          - type: mrr_at_1
            value: 10.502
          - type: mrr_at_10
            value: 14.818999999999999
          - type: mrr_at_100
            value: 15.716
          - type: mrr_at_1000
            value: 15.823
          - type: mrr_at_3
            value: 13.375
          - type: mrr_at_5
            value: 14.169
          - type: ndcg_at_1
            value: 10.502
          - type: ndcg_at_10
            value: 14.790000000000001
          - type: ndcg_at_100
            value: 19.881999999999998
          - type: ndcg_at_1000
            value: 23.703
          - type: ndcg_at_3
            value: 12.281
          - type: ndcg_at_5
            value: 13.33
          - type: precision_at_1
            value: 10.502
          - type: precision_at_10
            value: 2.911
          - type: precision_at_100
            value: 0.668
          - type: precision_at_1000
            value: 0.11499999999999999
          - type: precision_at_3
            value: 6.012
          - type: precision_at_5
            value: 4.475
          - type: recall_at_1
            value: 8.206
          - type: recall_at_10
            value: 20.508000000000003
          - type: recall_at_100
            value: 43.568
          - type: recall_at_1000
            value: 71.56400000000001
          - type: recall_at_3
            value: 13.607
          - type: recall_at_5
            value: 16.211000000000002
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackStatsRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 6.4159999999999995
          - type: map_at_10
            value: 9.581000000000001
          - type: map_at_100
            value: 10.123999999999999
          - type: map_at_1000
            value: 10.226
          - type: map_at_3
            value: 8.51
          - type: map_at_5
            value: 9.078999999999999
          - type: mrr_at_1
            value: 7.515
          - type: mrr_at_10
            value: 10.801
          - type: mrr_at_100
            value: 11.373
          - type: mrr_at_1000
            value: 11.466999999999999
          - type: mrr_at_3
            value: 9.637
          - type: mrr_at_5
            value: 10.197000000000001
          - type: ndcg_at_1
            value: 7.515
          - type: ndcg_at_10
            value: 11.776
          - type: ndcg_at_100
            value: 14.776
          - type: ndcg_at_1000
            value: 17.7
          - type: ndcg_at_3
            value: 9.515
          - type: ndcg_at_5
            value: 10.511
          - type: precision_at_1
            value: 7.515
          - type: precision_at_10
            value: 2.086
          - type: precision_at_100
            value: 0.402
          - type: precision_at_1000
            value: 0.07100000000000001
          - type: precision_at_3
            value: 4.397
          - type: precision_at_5
            value: 3.19
          - type: recall_at_1
            value: 6.4159999999999995
          - type: recall_at_10
            value: 17.468
          - type: recall_at_100
            value: 31.398
          - type: recall_at_1000
            value: 53.686
          - type: recall_at_3
            value: 11.379999999999999
          - type: recall_at_5
            value: 13.745
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackTexRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 4.646
          - type: map_at_10
            value: 7.047000000000001
          - type: map_at_100
            value: 7.697
          - type: map_at_1000
            value: 7.806
          - type: map_at_3
            value: 6.258
          - type: map_at_5
            value: 6.628
          - type: mrr_at_1
            value: 5.919
          - type: mrr_at_10
            value: 8.767999999999999
          - type: mrr_at_100
            value: 9.434
          - type: mrr_at_1000
            value: 9.524000000000001
          - type: mrr_at_3
            value: 7.8
          - type: mrr_at_5
            value: 8.275
          - type: ndcg_at_1
            value: 5.919
          - type: ndcg_at_10
            value: 8.927999999999999
          - type: ndcg_at_100
            value: 12.467
          - type: ndcg_at_1000
            value: 15.674
          - type: ndcg_at_3
            value: 7.3260000000000005
          - type: ndcg_at_5
            value: 7.931000000000001
          - type: precision_at_1
            value: 5.919
          - type: precision_at_10
            value: 1.7760000000000002
          - type: precision_at_100
            value: 0.438
          - type: precision_at_1000
            value: 0.086
          - type: precision_at_3
            value: 3.6249999999999996
          - type: precision_at_5
            value: 2.657
          - type: recall_at_1
            value: 4.646
          - type: recall_at_10
            value: 12.973
          - type: recall_at_100
            value: 29.444
          - type: recall_at_1000
            value: 53.413999999999994
          - type: recall_at_3
            value: 8.378
          - type: recall_at_5
            value: 9.957
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackUnixRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 9.202
          - type: map_at_10
            value: 13.402
          - type: map_at_100
            value: 14.330000000000002
          - type: map_at_1000
            value: 14.455000000000002
          - type: map_at_3
            value: 11.916
          - type: map_at_5
            value: 12.828000000000001
          - type: mrr_at_1
            value: 10.634
          - type: mrr_at_10
            value: 15.528
          - type: mrr_at_100
            value: 16.393
          - type: mrr_at_1000
            value: 16.497999999999998
          - type: mrr_at_3
            value: 13.837
          - type: mrr_at_5
            value: 14.821000000000002
          - type: ndcg_at_1
            value: 10.634
          - type: ndcg_at_10
            value: 16.267
          - type: ndcg_at_100
            value: 21.149
          - type: ndcg_at_1000
            value: 24.509
          - type: ndcg_at_3
            value: 13.320000000000002
          - type: ndcg_at_5
            value: 14.857000000000001
          - type: precision_at_1
            value: 10.634
          - type: precision_at_10
            value: 2.948
          - type: precision_at_100
            value: 0.618
          - type: precision_at_1000
            value: 0.10200000000000001
          - type: precision_at_3
            value: 6.188
          - type: precision_at_5
            value: 4.7010000000000005
          - type: recall_at_1
            value: 9.202
          - type: recall_at_10
            value: 22.921
          - type: recall_at_100
            value: 45.292
          - type: recall_at_1000
            value: 69.853
          - type: recall_at_3
            value: 15.126000000000001
          - type: recall_at_5
            value: 18.863
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackWebmastersRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 11.278
          - type: map_at_10
            value: 15.72
          - type: map_at_100
            value: 16.832
          - type: map_at_1000
            value: 17.025000000000002
          - type: map_at_3
            value: 13.852999999999998
          - type: map_at_5
            value: 14.654
          - type: mrr_at_1
            value: 14.822
          - type: mrr_at_10
            value: 19.564
          - type: mrr_at_100
            value: 20.509
          - type: mrr_at_1000
            value: 20.607
          - type: mrr_at_3
            value: 17.721
          - type: mrr_at_5
            value: 18.451999999999998
          - type: ndcg_at_1
            value: 14.822
          - type: ndcg_at_10
            value: 19.548
          - type: ndcg_at_100
            value: 24.734
          - type: ndcg_at_1000
            value: 28.832
          - type: ndcg_at_3
            value: 16.14
          - type: ndcg_at_5
            value: 17.253
          - type: precision_at_1
            value: 14.822
          - type: precision_at_10
            value: 3.972
          - type: precision_at_100
            value: 0.943
          - type: precision_at_1000
            value: 0.183
          - type: precision_at_3
            value: 7.642
          - type: precision_at_5
            value: 5.6129999999999995
          - type: recall_at_1
            value: 11.278
          - type: recall_at_10
            value: 27.006999999999998
          - type: recall_at_100
            value: 51.012
          - type: recall_at_1000
            value: 79.833
          - type: recall_at_3
            value: 16.785
          - type: recall_at_5
            value: 19.82
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackWordpressRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 5.305
          - type: map_at_10
            value: 9.099
          - type: map_at_100
            value: 9.927999999999999
          - type: map_at_1000
            value: 10.027
          - type: map_at_3
            value: 7.7700000000000005
          - type: map_at_5
            value: 8.333
          - type: mrr_at_1
            value: 6.1
          - type: mrr_at_10
            value: 10.227
          - type: mrr_at_100
            value: 11.057
          - type: mrr_at_1000
            value: 11.151
          - type: mrr_at_3
            value: 8.842
          - type: mrr_at_5
            value: 9.442
          - type: ndcg_at_1
            value: 6.1
          - type: ndcg_at_10
            value: 11.769
          - type: ndcg_at_100
            value: 16.378999999999998
          - type: ndcg_at_1000
            value: 19.517
          - type: ndcg_at_3
            value: 8.936
          - type: ndcg_at_5
            value: 9.907
          - type: precision_at_1
            value: 6.1
          - type: precision_at_10
            value: 2.181
          - type: precision_at_100
            value: 0.481
          - type: precision_at_1000
            value: 0.08099999999999999
          - type: precision_at_3
            value: 4.19
          - type: precision_at_5
            value: 3.031
          - type: recall_at_1
            value: 5.305
          - type: recall_at_10
            value: 19.236
          - type: recall_at_100
            value: 41.333999999999996
          - type: recall_at_1000
            value: 65.96600000000001
          - type: recall_at_3
            value: 11.189
          - type: recall_at_5
            value: 13.592
      - task:
          type: Retrieval
        dataset:
          type: climate-fever
          name: MTEB ClimateFEVER
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 0.882
          - type: map_at_10
            value: 1.6
          - type: map_at_100
            value: 1.894
          - type: map_at_1000
            value: 1.9640000000000002
          - type: map_at_3
            value: 1.345
          - type: map_at_5
            value: 1.444
          - type: mrr_at_1
            value: 2.2800000000000002
          - type: mrr_at_10
            value: 3.8510000000000004
          - type: mrr_at_100
            value: 4.401
          - type: mrr_at_1000
            value: 4.472
          - type: mrr_at_3
            value: 3.2359999999999998
          - type: mrr_at_5
            value: 3.519
          - type: ndcg_at_1
            value: 2.2800000000000002
          - type: ndcg_at_10
            value: 2.5829999999999997
          - type: ndcg_at_100
            value: 4.629
          - type: ndcg_at_1000
            value: 6.709
          - type: ndcg_at_3
            value: 1.978
          - type: ndcg_at_5
            value: 2.133
          - type: precision_at_1
            value: 2.2800000000000002
          - type: precision_at_10
            value: 0.86
          - type: precision_at_100
            value: 0.298
          - type: precision_at_1000
            value: 0.065
          - type: precision_at_3
            value: 1.52
          - type: precision_at_5
            value: 1.173
          - type: recall_at_1
            value: 0.882
          - type: recall_at_10
            value: 3.273
          - type: recall_at_100
            value: 11.254
          - type: recall_at_1000
            value: 23.988
          - type: recall_at_3
            value: 1.818
          - type: recall_at_5
            value: 2.236
      - task:
          type: Retrieval
        dataset:
          type: dbpedia-entity
          name: MTEB DBPedia
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 1.057
          - type: map_at_10
            value: 2.289
          - type: map_at_100
            value: 2.844
          - type: map_at_1000
            value: 3.026
          - type: map_at_3
            value: 1.661
          - type: map_at_5
            value: 1.931
          - type: mrr_at_1
            value: 12.75
          - type: mrr_at_10
            value: 17.645
          - type: mrr_at_100
            value: 18.312
          - type: mrr_at_1000
            value: 18.385
          - type: mrr_at_3
            value: 15.958
          - type: mrr_at_5
            value: 17.046
          - type: ndcg_at_1
            value: 10
          - type: ndcg_at_10
            value: 6.890000000000001
          - type: ndcg_at_100
            value: 7.131
          - type: ndcg_at_1000
            value: 9.725
          - type: ndcg_at_3
            value: 8.222
          - type: ndcg_at_5
            value: 7.536
          - type: precision_at_1
            value: 12.75
          - type: precision_at_10
            value: 5.925
          - type: precision_at_100
            value: 1.6469999999999998
          - type: precision_at_1000
            value: 0.40299999999999997
          - type: precision_at_3
            value: 9.667
          - type: precision_at_5
            value: 8
          - type: recall_at_1
            value: 1.057
          - type: recall_at_10
            value: 3.8580000000000005
          - type: recall_at_100
            value: 8.685
          - type: recall_at_1000
            value: 17.605
          - type: recall_at_3
            value: 2.041
          - type: recall_at_5
            value: 2.811
      - task:
          type: Classification
        dataset:
          type: mteb/emotion
          name: MTEB EmotionClassification
          config: default
          split: test
          revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
        metrics:
          - type: accuracy
            value: 20.674999999999997
          - type: f1
            value: 17.79184478487413
      - task:
          type: Retrieval
        dataset:
          type: fever
          name: MTEB FEVER
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 2.637
          - type: map_at_10
            value: 3.9730000000000003
          - type: map_at_100
            value: 4.228
          - type: map_at_1000
            value: 4.268000000000001
          - type: map_at_3
            value: 3.542
          - type: map_at_5
            value: 3.763
          - type: mrr_at_1
            value: 2.7449999999999997
          - type: mrr_at_10
            value: 4.146
          - type: mrr_at_100
            value: 4.42
          - type: mrr_at_1000
            value: 4.460999999999999
          - type: mrr_at_3
            value: 3.695
          - type: mrr_at_5
            value: 3.925
          - type: ndcg_at_1
            value: 2.7449999999999997
          - type: ndcg_at_10
            value: 4.801
          - type: ndcg_at_100
            value: 6.198
          - type: ndcg_at_1000
            value: 7.468
          - type: ndcg_at_3
            value: 3.882
          - type: ndcg_at_5
            value: 4.283
          - type: precision_at_1
            value: 2.7449999999999997
          - type: precision_at_10
            value: 0.771
          - type: precision_at_100
            value: 0.152
          - type: precision_at_1000
            value: 0.027
          - type: precision_at_3
            value: 1.6549999999999998
          - type: precision_at_5
            value: 1.206
          - type: recall_at_1
            value: 2.637
          - type: recall_at_10
            value: 7.2669999999999995
          - type: recall_at_100
            value: 13.982
          - type: recall_at_1000
            value: 24.192
          - type: recall_at_3
            value: 4.712000000000001
          - type: recall_at_5
            value: 5.6739999999999995
      - task:
          type: Retrieval
        dataset:
          type: fiqa
          name: MTEB FiQA2018
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 2.91
          - type: map_at_10
            value: 5.721
          - type: map_at_100
            value: 6.489000000000001
          - type: map_at_1000
            value: 6.642
          - type: map_at_3
            value: 4.797
          - type: map_at_5
            value: 5.292
          - type: mrr_at_1
            value: 6.481000000000001
          - type: mrr_at_10
            value: 10.624
          - type: mrr_at_100
            value: 11.498999999999999
          - type: mrr_at_1000
            value: 11.599
          - type: mrr_at_3
            value: 9.285
          - type: mrr_at_5
            value: 10.003
          - type: ndcg_at_1
            value: 6.481000000000001
          - type: ndcg_at_10
            value: 8.303
          - type: ndcg_at_100
            value: 12.512
          - type: ndcg_at_1000
            value: 16.665
          - type: ndcg_at_3
            value: 6.827
          - type: ndcg_at_5
            value: 7.367
          - type: precision_at_1
            value: 6.481000000000001
          - type: precision_at_10
            value: 2.485
          - type: precision_at_100
            value: 0.668
          - type: precision_at_1000
            value: 0.13899999999999998
          - type: precision_at_3
            value: 4.733
          - type: precision_at_5
            value: 3.642
          - type: recall_at_1
            value: 2.91
          - type: recall_at_10
            value: 11.239
          - type: recall_at_100
            value: 27.877999999999997
          - type: recall_at_1000
            value: 54.507000000000005
          - type: recall_at_3
            value: 6.683
          - type: recall_at_5
            value: 8.591
      - task:
          type: Retrieval
        dataset:
          type: hotpotqa
          name: MTEB HotpotQA
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 2.073
          - type: map_at_10
            value: 2.919
          - type: map_at_100
            value: 3.107
          - type: map_at_1000
            value: 3.143
          - type: map_at_3
            value: 2.6100000000000003
          - type: map_at_5
            value: 2.773
          - type: mrr_at_1
            value: 4.146
          - type: mrr_at_10
            value: 5.657
          - type: mrr_at_100
            value: 5.970000000000001
          - type: mrr_at_1000
            value: 6.022
          - type: mrr_at_3
            value: 5.116
          - type: mrr_at_5
            value: 5.411
          - type: ndcg_at_1
            value: 4.146
          - type: ndcg_at_10
            value: 4.115
          - type: ndcg_at_100
            value: 5.319
          - type: ndcg_at_1000
            value: 6.584
          - type: ndcg_at_3
            value: 3.3709999999999996
          - type: ndcg_at_5
            value: 3.7159999999999997
          - type: precision_at_1
            value: 4.146
          - type: precision_at_10
            value: 0.983
          - type: precision_at_100
            value: 0.197
          - type: precision_at_1000
            value: 0.037
          - type: precision_at_3
            value: 2.152
          - type: precision_at_5
            value: 1.564
          - type: recall_at_1
            value: 2.073
          - type: recall_at_10
            value: 4.916
          - type: recall_at_100
            value: 9.844999999999999
          - type: recall_at_1000
            value: 18.454
          - type: recall_at_3
            value: 3.228
          - type: recall_at_5
            value: 3.91
      - task:
          type: Classification
        dataset:
          type: mteb/imdb
          name: MTEB ImdbClassification
          config: default
          split: test
          revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
        metrics:
          - type: accuracy
            value: 53.28480000000001
          - type: ap
            value: 51.81084207241404
          - type: f1
            value: 52.83683146513476
      - task:
          type: Retrieval
        dataset:
          type: msmarco
          name: MTEB MSMARCO
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 2.613
          - type: map_at_10
            value: 4.33
          - type: map_at_100
            value: 4.681
          - type: map_at_1000
            value: 4.731
          - type: map_at_3
            value: 3.7560000000000002
          - type: map_at_5
            value: 4.035
          - type: mrr_at_1
            value: 2.665
          - type: mrr_at_10
            value: 4.436
          - type: mrr_at_100
            value: 4.797
          - type: mrr_at_1000
            value: 4.848
          - type: mrr_at_3
            value: 3.83
          - type: mrr_at_5
            value: 4.123
          - type: ndcg_at_1
            value: 2.665
          - type: ndcg_at_10
            value: 5.399
          - type: ndcg_at_100
            value: 7.402
          - type: ndcg_at_1000
            value: 9.08
          - type: ndcg_at_3
            value: 4.1579999999999995
          - type: ndcg_at_5
            value: 4.664
          - type: precision_at_1
            value: 2.665
          - type: precision_at_10
            value: 0.907
          - type: precision_at_100
            value: 0.19499999999999998
          - type: precision_at_1000
            value: 0.034
          - type: precision_at_3
            value: 1.791
          - type: precision_at_5
            value: 1.3299999999999998
          - type: recall_at_1
            value: 2.613
          - type: recall_at_10
            value: 8.729000000000001
          - type: recall_at_100
            value: 18.668000000000003
          - type: recall_at_1000
            value: 32.387
          - type: recall_at_3
            value: 5.25
          - type: recall_at_5
            value: 6.465
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_domain
          name: MTEB MTOPDomainClassification (en)
          config: en
          split: test
          revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
        metrics:
          - type: accuracy
            value: 73.57729138166896
          - type: f1
            value: 71.0267308110663
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_intent
          name: MTEB MTOPIntentClassification (en)
          config: en
          split: test
          revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
        metrics:
          - type: accuracy
            value: 38.76652986776106
          - type: f1
            value: 24.385724192837007
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (en)
          config: en
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 43.43308675184936
          - type: f1
            value: 39.072401899805016
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (en)
          config: en
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 55.225285810356425
          - type: f1
            value: 49.81719052485716
      - task:
          type: Clustering
        dataset:
          type: mteb/medrxiv-clustering-p2p
          name: MTEB MedrxivClusteringP2P
          config: default
          split: test
          revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
        metrics:
          - type: v_measure
            value: 20.583405653329283
      - task:
          type: Clustering
        dataset:
          type: mteb/medrxiv-clustering-s2s
          name: MTEB MedrxivClusteringS2S
          config: default
          split: test
          revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
        metrics:
          - type: v_measure
            value: 17.155646378261917
      - task:
          type: Reranking
        dataset:
          type: mteb/mind_small
          name: MTEB MindSmallReranking
          config: default
          split: test
          revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
        metrics:
          - type: map
            value: 24.26316550665883
          - type: mrr
            value: 23.951621402458755
      - task:
          type: Retrieval
        dataset:
          type: nfcorpus
          name: MTEB NFCorpus
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 1.4040000000000001
          - type: map_at_10
            value: 2.199
          - type: map_at_100
            value: 2.597
          - type: map_at_1000
            value: 3.15
          - type: map_at_3
            value: 1.7850000000000001
          - type: map_at_5
            value: 2.005
          - type: mrr_at_1
            value: 13.932
          - type: mrr_at_10
            value: 19.529
          - type: mrr_at_100
            value: 20.53
          - type: mrr_at_1000
            value: 20.635
          - type: mrr_at_3
            value: 17.647
          - type: mrr_at_5
            value: 18.731
          - type: ndcg_at_1
            value: 12.539
          - type: ndcg_at_10
            value: 8.676
          - type: ndcg_at_100
            value: 8.092
          - type: ndcg_at_1000
            value: 16.375999999999998
          - type: ndcg_at_3
            value: 10.615
          - type: ndcg_at_5
            value: 9.690999999999999
          - type: precision_at_1
            value: 13.622
          - type: precision_at_10
            value: 6.315999999999999
          - type: precision_at_100
            value: 2.486
          - type: precision_at_1000
            value: 1.317
          - type: precision_at_3
            value: 10.113999999999999
          - type: precision_at_5
            value: 8.235000000000001
          - type: recall_at_1
            value: 1.4040000000000001
          - type: recall_at_10
            value: 3.794
          - type: recall_at_100
            value: 9.71
          - type: recall_at_1000
            value: 37.476
          - type: recall_at_3
            value: 2.197
          - type: recall_at_5
            value: 2.929
      - task:
          type: Retrieval
        dataset:
          type: nq
          name: MTEB NQ
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 1.299
          - type: map_at_10
            value: 2.7279999999999998
          - type: map_at_100
            value: 3.065
          - type: map_at_1000
            value: 3.118
          - type: map_at_3
            value: 2.182
          - type: map_at_5
            value: 2.48
          - type: mrr_at_1
            value: 1.6219999999999999
          - type: mrr_at_10
            value: 3.237
          - type: mrr_at_100
            value: 3.5749999999999997
          - type: mrr_at_1000
            value: 3.626
          - type: mrr_at_3
            value: 2.6550000000000002
          - type: mrr_at_5
            value: 2.9770000000000003
          - type: ndcg_at_1
            value: 1.6219999999999999
          - type: ndcg_at_10
            value: 3.768
          - type: ndcg_at_100
            value: 5.721
          - type: ndcg_at_1000
            value: 7.346
          - type: ndcg_at_3
            value: 2.604
          - type: ndcg_at_5
            value: 3.1530000000000005
          - type: precision_at_1
            value: 1.6219999999999999
          - type: precision_at_10
            value: 0.776
          - type: precision_at_100
            value: 0.194
          - type: precision_at_1000
            value: 0.034999999999999996
          - type: precision_at_3
            value: 1.371
          - type: precision_at_5
            value: 1.1119999999999999
          - type: recall_at_1
            value: 1.299
          - type: recall_at_10
            value: 6.54
          - type: recall_at_100
            value: 16.014999999999997
          - type: recall_at_1000
            value: 28.776000000000003
          - type: recall_at_3
            value: 3.37
          - type: recall_at_5
            value: 4.676
      - task:
          type: Retrieval
        dataset:
          type: quora
          name: MTEB QuoraRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 50.827
          - type: map_at_10
            value: 60.903
          - type: map_at_100
            value: 61.67700000000001
          - type: map_at_1000
            value: 61.729
          - type: map_at_3
            value: 58.411
          - type: map_at_5
            value: 59.854
          - type: mrr_at_1
            value: 58.52
          - type: mrr_at_10
            value: 65.53999999999999
          - type: mrr_at_100
            value: 65.94
          - type: mrr_at_1000
            value: 65.962
          - type: mrr_at_3
            value: 63.905
          - type: mrr_at_5
            value: 64.883
          - type: ndcg_at_1
            value: 58.51
          - type: ndcg_at_10
            value: 65.458
          - type: ndcg_at_100
            value: 68.245
          - type: ndcg_at_1000
            value: 69.244
          - type: ndcg_at_3
            value: 61.970000000000006
          - type: ndcg_at_5
            value: 63.664
          - type: precision_at_1
            value: 58.51
          - type: precision_at_10
            value: 9.873999999999999
          - type: precision_at_100
            value: 1.24
          - type: precision_at_1000
            value: 0.13899999999999998
          - type: precision_at_3
            value: 26.650000000000002
          - type: precision_at_5
            value: 17.666
          - type: recall_at_1
            value: 50.827
          - type: recall_at_10
            value: 74.13300000000001
          - type: recall_at_100
            value: 85.724
          - type: recall_at_1000
            value: 92.551
          - type: recall_at_3
            value: 64.122
          - type: recall_at_5
            value: 68.757
      - task:
          type: Clustering
        dataset:
          type: mteb/reddit-clustering
          name: MTEB RedditClustering
          config: default
          split: test
          revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
        metrics:
          - type: v_measure
            value: 15.106948858308094
      - task:
          type: Clustering
        dataset:
          type: mteb/reddit-clustering-p2p
          name: MTEB RedditClusteringP2P
          config: default
          split: test
          revision: 282350215ef01743dc01b456c7f5241fa8937f16
        metrics:
          - type: v_measure
            value: 30.968103547012337
      - task:
          type: Retrieval
        dataset:
          type: scidocs
          name: MTEB SCIDOCS
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 1.4749999999999999
          - type: map_at_10
            value: 3.434
          - type: map_at_100
            value: 4.139
          - type: map_at_1000
            value: 4.312
          - type: map_at_3
            value: 2.554
          - type: map_at_5
            value: 2.999
          - type: mrr_at_1
            value: 7.3
          - type: mrr_at_10
            value: 12.031
          - type: mrr_at_100
            value: 12.97
          - type: mrr_at_1000
            value: 13.092
          - type: mrr_at_3
            value: 10.217
          - type: mrr_at_5
            value: 11.172
          - type: ndcg_at_1
            value: 7.3
          - type: ndcg_at_10
            value: 6.406000000000001
          - type: ndcg_at_100
            value: 10.302999999999999
          - type: ndcg_at_1000
            value: 14.791000000000002
          - type: ndcg_at_3
            value: 5.982
          - type: ndcg_at_5
            value: 5.274
          - type: precision_at_1
            value: 7.3
          - type: precision_at_10
            value: 3.37
          - type: precision_at_100
            value: 0.914
          - type: precision_at_1000
            value: 0.201
          - type: precision_at_3
            value: 5.567
          - type: precision_at_5
            value: 4.68
          - type: recall_at_1
            value: 1.4749999999999999
          - type: recall_at_10
            value: 6.79
          - type: recall_at_100
            value: 18.55
          - type: recall_at_1000
            value: 40.842
          - type: recall_at_3
            value: 3.36
          - type: recall_at_5
            value: 4.72
      - task:
          type: STS
        dataset:
          type: mteb/sickr-sts
          name: MTEB SICK-R
          config: default
          split: test
          revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
        metrics:
          - type: cos_sim_pearson
            value: 59.464420082440526
          - type: cos_sim_spearman
            value: 54.319988337451704
          - type: euclidean_pearson
            value: 57.042312873314295
          - type: euclidean_spearman
            value: 54.31996388571784
          - type: manhattan_pearson
            value: 57.078786802338435
          - type: manhattan_spearman
            value: 54.323312153757456
      - task:
          type: STS
        dataset:
          type: mteb/sts12-sts
          name: MTEB STS12
          config: default
          split: test
          revision: a0d554a64d88156834ff5ae9920b964011b16384
        metrics:
          - type: cos_sim_pearson
            value: 60.08105871689929
          - type: cos_sim_spearman
            value: 57.53293836132526
          - type: euclidean_pearson
            value: 57.69984777047449
          - type: euclidean_spearman
            value: 57.534154476967345
          - type: manhattan_pearson
            value: 57.661519973840946
          - type: manhattan_spearman
            value: 57.447636234309854
      - task:
          type: STS
        dataset:
          type: mteb/sts13-sts
          name: MTEB STS13
          config: default
          split: test
          revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
        metrics:
          - type: cos_sim_pearson
            value: 57.12692049687197
          - type: cos_sim_spearman
            value: 57.4759438730368
          - type: euclidean_pearson
            value: 58.41782334532981
          - type: euclidean_spearman
            value: 57.47613008122331
          - type: manhattan_pearson
            value: 58.41335837274888
          - type: manhattan_spearman
            value: 57.465936751045746
      - task:
          type: STS
        dataset:
          type: mteb/sts14-sts
          name: MTEB STS14
          config: default
          split: test
          revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
        metrics:
          - type: cos_sim_pearson
            value: 53.84165004759765
          - type: cos_sim_spearman
            value: 52.32112048731462
          - type: euclidean_pearson
            value: 52.790405817119094
          - type: euclidean_spearman
            value: 52.32112268628659
          - type: manhattan_pearson
            value: 52.804939090733804
          - type: manhattan_spearman
            value: 52.31750678935915
      - task:
          type: STS
        dataset:
          type: mteb/sts15-sts
          name: MTEB STS15
          config: default
          split: test
          revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
        metrics:
          - type: cos_sim_pearson
            value: 63.555819199866036
          - type: cos_sim_spearman
            value: 64.05841117331784
          - type: euclidean_pearson
            value: 63.659991414541786
          - type: euclidean_spearman
            value: 64.05841071779129
          - type: manhattan_pearson
            value: 63.6915442281397
          - type: manhattan_spearman
            value: 64.07728265258595
      - task:
          type: STS
        dataset:
          type: mteb/sts16-sts
          name: MTEB STS16
          config: default
          split: test
          revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
        metrics:
          - type: cos_sim_pearson
            value: 63.03024268207247
          - type: cos_sim_spearman
            value: 63.53003651570799
          - type: euclidean_pearson
            value: 64.09620752390686
          - type: euclidean_spearman
            value: 63.530036058718096
          - type: manhattan_pearson
            value: 64.07468313413827
          - type: manhattan_spearman
            value: 63.526415746516285
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (en-en)
          config: en-en
          split: test
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
        metrics:
          - type: cos_sim_pearson
            value: 70.18862439704168
          - type: cos_sim_spearman
            value: 70.97966882821095
          - type: euclidean_pearson
            value: 71.04858522892525
          - type: euclidean_spearman
            value: 70.97966882821095
          - type: manhattan_pearson
            value: 71.0777838495318
          - type: manhattan_spearman
            value: 71.08141859528023
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (en)
          config: en
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 49.680993011354964
          - type: cos_sim_spearman
            value: 55.990646519065734
          - type: euclidean_pearson
            value: 52.53309325175639
          - type: euclidean_spearman
            value: 55.990646519065734
          - type: manhattan_pearson
            value: 52.55809108662631
          - type: manhattan_spearman
            value: 55.65236114980215
      - task:
          type: STS
        dataset:
          type: mteb/stsbenchmark-sts
          name: MTEB STSBenchmark
          config: default
          split: test
          revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
        metrics:
          - type: cos_sim_pearson
            value: 61.18394695826386
          - type: cos_sim_spearman
            value: 60.77402126712771
          - type: euclidean_pearson
            value: 61.202070794992736
          - type: euclidean_spearman
            value: 60.77402126712771
          - type: manhattan_pearson
            value: 61.2505175850885
          - type: manhattan_spearman
            value: 60.77213463387346
      - task:
          type: Reranking
        dataset:
          type: mteb/scidocs-reranking
          name: MTEB SciDocsRR
          config: default
          split: test
          revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
        metrics:
          - type: map
            value: 58.251838750265804
          - type: mrr
            value: 81.27406090641384
      - task:
          type: Retrieval
        dataset:
          type: scifact
          name: MTEB SciFact
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 8.833
          - type: map_at_10
            value: 11.219999999999999
          - type: map_at_100
            value: 12.086
          - type: map_at_1000
            value: 12.200999999999999
          - type: map_at_3
            value: 10.056
          - type: map_at_5
            value: 10.664
          - type: mrr_at_1
            value: 9
          - type: mrr_at_10
            value: 11.875
          - type: mrr_at_100
            value: 12.757
          - type: mrr_at_1000
            value: 12.864
          - type: mrr_at_3
            value: 10.722
          - type: mrr_at_5
            value: 11.322000000000001
          - type: ndcg_at_1
            value: 9
          - type: ndcg_at_10
            value: 13.001
          - type: ndcg_at_100
            value: 17.784
          - type: ndcg_at_1000
            value: 21.695
          - type: ndcg_at_3
            value: 10.63
          - type: ndcg_at_5
            value: 11.693000000000001
          - type: precision_at_1
            value: 9
          - type: precision_at_10
            value: 2
          - type: precision_at_100
            value: 0.46299999999999997
          - type: precision_at_1000
            value: 0.083
          - type: precision_at_3
            value: 4.222
          - type: precision_at_5
            value: 3.1329999999999996
          - type: recall_at_1
            value: 8.833
          - type: recall_at_10
            value: 18
          - type: recall_at_100
            value: 41.211
          - type: recall_at_1000
            value: 73.14399999999999
          - type: recall_at_3
            value: 11.5
          - type: recall_at_5
            value: 14.083000000000002
      - task:
          type: PairClassification
        dataset:
          type: mteb/sprintduplicatequestions-pairclassification
          name: MTEB SprintDuplicateQuestions
          config: default
          split: test
          revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
        metrics:
          - type: cos_sim_accuracy
            value: 99.44455445544554
          - type: cos_sim_ap
            value: 68.76115592640271
          - type: cos_sim_f1
            value: 67.29805013927577
          - type: cos_sim_precision
            value: 75.9748427672956
          - type: cos_sim_recall
            value: 60.4
          - type: dot_accuracy
            value: 99.44455445544554
          - type: dot_ap
            value: 68.76115778951738
          - type: dot_f1
            value: 67.29805013927577
          - type: dot_precision
            value: 75.9748427672956
          - type: dot_recall
            value: 60.4
          - type: euclidean_accuracy
            value: 99.44455445544554
          - type: euclidean_ap
            value: 68.76115530286063
          - type: euclidean_f1
            value: 67.29805013927577
          - type: euclidean_precision
            value: 75.9748427672956
          - type: euclidean_recall
            value: 60.4
          - type: manhattan_accuracy
            value: 99.44653465346535
          - type: manhattan_ap
            value: 68.76446446842253
          - type: manhattan_f1
            value: 67.34926052332196
          - type: manhattan_precision
            value: 78.10026385224275
          - type: manhattan_recall
            value: 59.199999999999996
          - type: max_accuracy
            value: 99.44653465346535
          - type: max_ap
            value: 68.76446446842253
          - type: max_f1
            value: 67.34926052332196
      - task:
          type: Clustering
        dataset:
          type: mteb/stackexchange-clustering
          name: MTEB StackExchangeClustering
          config: default
          split: test
          revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
        metrics:
          - type: v_measure
            value: 28.486032726226675
      - task:
          type: Clustering
        dataset:
          type: mteb/stackexchange-clustering-p2p
          name: MTEB StackExchangeClusteringP2P
          config: default
          split: test
          revision: 815ca46b2622cec33ccafc3735d572c266efdb44
        metrics:
          - type: v_measure
            value: 29.654061810103283
      - task:
          type: Reranking
        dataset:
          type: mteb/stackoverflowdupquestions-reranking
          name: MTEB StackOverflowDupQuestions
          config: default
          split: test
          revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
        metrics:
          - type: map
            value: 39.81455140801657
          - type: mrr
            value: 40.09712407690349
      - task:
          type: Retrieval
        dataset:
          type: trec-covid
          name: MTEB TRECCOVID
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 0.05
          - type: map_at_10
            value: 0.191
          - type: map_at_100
            value: 0.346
          - type: map_at_1000
            value: 0.553
          - type: map_at_3
            value: 0.11299999999999999
          - type: map_at_5
            value: 0.148
          - type: mrr_at_1
            value: 22
          - type: mrr_at_10
            value: 30.091
          - type: mrr_at_100
            value: 31.241999999999997
          - type: mrr_at_1000
            value: 31.298
          - type: mrr_at_3
            value: 28.000000000000004
          - type: mrr_at_5
            value: 28.999999999999996
          - type: ndcg_at_1
            value: 18
          - type: ndcg_at_10
            value: 12.501000000000001
          - type: ndcg_at_100
            value: 5.605
          - type: ndcg_at_1000
            value: 4.543
          - type: ndcg_at_3
            value: 17.531
          - type: ndcg_at_5
            value: 15.254999999999999
          - type: precision_at_1
            value: 22
          - type: precision_at_10
            value: 12.6
          - type: precision_at_100
            value: 5.06
          - type: precision_at_1000
            value: 2.028
          - type: precision_at_3
            value: 20.666999999999998
          - type: precision_at_5
            value: 16.8
          - type: recall_at_1
            value: 0.05
          - type: recall_at_10
            value: 0.267
          - type: recall_at_100
            value: 1.102
          - type: recall_at_1000
            value: 4.205
          - type: recall_at_3
            value: 0.134
          - type: recall_at_5
            value: 0.182
      - task:
          type: Retrieval
        dataset:
          type: webis-touche2020
          name: MTEB Touche2020
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 0.45199999999999996
          - type: map_at_10
            value: 1.986
          - type: map_at_100
            value: 3.887
          - type: map_at_1000
            value: 4.5809999999999995
          - type: map_at_3
            value: 0.9299999999999999
          - type: map_at_5
            value: 1.287
          - type: mrr_at_1
            value: 8.163
          - type: mrr_at_10
            value: 16.152
          - type: mrr_at_100
            value: 17.187
          - type: mrr_at_1000
            value: 17.301
          - type: mrr_at_3
            value: 11.224
          - type: mrr_at_5
            value: 12.653
          - type: ndcg_at_1
            value: 4.082
          - type: ndcg_at_10
            value: 6.687
          - type: ndcg_at_100
            value: 13.158
          - type: ndcg_at_1000
            value: 22.259
          - type: ndcg_at_3
            value: 5.039
          - type: ndcg_at_5
            value: 5.519
          - type: precision_at_1
            value: 8.163
          - type: precision_at_10
            value: 8.163
          - type: precision_at_100
            value: 3.51
          - type: precision_at_1000
            value: 0.9159999999999999
          - type: precision_at_3
            value: 7.483
          - type: precision_at_5
            value: 7.3469999999999995
          - type: recall_at_1
            value: 0.45199999999999996
          - type: recall_at_10
            value: 5.27
          - type: recall_at_100
            value: 20.75
          - type: recall_at_1000
            value: 49.236999999999995
          - type: recall_at_3
            value: 1.28
          - type: recall_at_5
            value: 2.045
      - task:
          type: Classification
        dataset:
          type: mteb/toxic_conversations_50k
          name: MTEB ToxicConversationsClassification
          config: default
          split: test
          revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
        metrics:
          - type: accuracy
            value: 57.08740000000001
          - type: ap
            value: 9.092681400063896
          - type: f1
            value: 43.966684273361125
      - task:
          type: Classification
        dataset:
          type: mteb/tweet_sentiment_extraction
          name: MTEB TweetSentimentExtractionClassification
          config: default
          split: test
          revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
        metrics:
          - type: accuracy
            value: 42.314657611771366
          - type: f1
            value: 42.2349043058169
      - task:
          type: Clustering
        dataset:
          type: mteb/twentynewsgroups-clustering
          name: MTEB TwentyNewsgroupsClustering
          config: default
          split: test
          revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
        metrics:
          - type: v_measure
            value: 15.71319288909283
      - task:
          type: PairClassification
        dataset:
          type: mteb/twittersemeval2015-pairclassification
          name: MTEB TwitterSemEval2015
          config: default
          split: test
          revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
        metrics:
          - type: cos_sim_accuracy
            value: 78.84007867914407
          - type: cos_sim_ap
            value: 42.2183603452187
          - type: cos_sim_f1
            value: 43.1781412906705
          - type: cos_sim_precision
            value: 32.74263904034896
          - type: cos_sim_recall
            value: 63.377308707124016
          - type: dot_accuracy
            value: 78.84007867914407
          - type: dot_ap
            value: 42.21836359699547
          - type: dot_f1
            value: 43.1781412906705
          - type: dot_precision
            value: 32.74263904034896
          - type: dot_recall
            value: 63.377308707124016
          - type: euclidean_accuracy
            value: 78.84007867914407
          - type: euclidean_ap
            value: 42.218363575958854
          - type: euclidean_f1
            value: 43.1781412906705
          - type: euclidean_precision
            value: 32.74263904034896
          - type: euclidean_recall
            value: 63.377308707124016
          - type: manhattan_accuracy
            value: 78.79239434940692
          - type: manhattan_ap
            value: 42.178124350579
          - type: manhattan_f1
            value: 43.16231513602337
          - type: manhattan_precision
            value: 32.99832495812395
          - type: manhattan_recall
            value: 62.37467018469657
          - type: max_accuracy
            value: 78.84007867914407
          - type: max_ap
            value: 42.21836359699547
          - type: max_f1
            value: 43.1781412906705
      - task:
          type: PairClassification
        dataset:
          type: mteb/twitterurlcorpus-pairclassification
          name: MTEB TwitterURLCorpus
          config: default
          split: test
          revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
        metrics:
          - type: cos_sim_accuracy
            value: 82.51445647533667
          - type: cos_sim_ap
            value: 69.65701766911302
          - type: cos_sim_f1
            value: 62.92060699362217
          - type: cos_sim_precision
            value: 60.046173219532676
          - type: cos_sim_recall
            value: 66.08407761010163
          - type: dot_accuracy
            value: 82.51445647533667
          - type: dot_ap
            value: 69.6569952654014
          - type: dot_f1
            value: 62.92060699362217
          - type: dot_precision
            value: 60.046173219532676
          - type: dot_recall
            value: 66.08407761010163
          - type: euclidean_accuracy
            value: 82.51445647533667
          - type: euclidean_ap
            value: 69.65697749857492
          - type: euclidean_f1
            value: 62.92060699362217
          - type: euclidean_precision
            value: 60.046173219532676
          - type: euclidean_recall
            value: 66.08407761010163
          - type: manhattan_accuracy
            value: 82.52221834128925
          - type: manhattan_ap
            value: 69.65965534790995
          - type: manhattan_f1
            value: 62.865817064991006
          - type: manhattan_precision
            value: 58.04811265401917
          - type: manhattan_recall
            value: 68.55558977517708
          - type: max_accuracy
            value: 82.52221834128925
          - type: max_ap
            value: 69.65965534790995
          - type: max_f1
            value: 62.92060699362217