See axolotl config
axolotl version: 0.9.2
base_model: ./ale_outputs/opendata-sft-debug-reg/checkpoint-1500/ # <โ checkpoint finale precedente
strict: false
output_dir: ./ale_outputs/opendata-sft-lastmile
seed: 42
chat_template: llama3
datasets:
- path: /leonardo_work/EUHPC_A04_045/training/opendata-1000000
type: chat_template
field_messages: conversation
roles_to_train: ["assistant"]
train_on_eos: turn
dataset_prepared_path: ./ale_outputs/dataset_cache/opendata-sft
# ---- Training (last-mile fine-tuning) ----
max_steps: 800 # 500โ800 step per consolidare
lr_scheduler: constant_with_warmup
learning_rate: 9.0e-6 # LR โvivoโ per qualche centinaio di step
warmup_ratio: 0.0
weight_decay: 0.005
max_grad_norm: 1.0
micro_batch_size: 1
gradient_accumulation_steps: 8
bf16: auto
flash_attention: true
gradient_checkpointing: true
eval_strategy: steps
eval_steps: 100
save_strategy: steps
save_steps: 200
save_total_limit: 4
val_set_size: 10000
# ---- Token ----
special_tokens:
pad_token: <|end_of_text|>
eos_token: <|eot_id|> # importantissimo per train_on_eos: turn
# ---- fsdp ---- (se ti serve ancora)
fsdp_config:
fsdp_sharding_strategy: FULL_SHARD
fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
fsdp_transformer_layer_cls_to_wrap: LlamaDecoderLayer
fsdp_backward_prefetch_policy: BACKWARD_PRE
fsdp_state_dict_type: FULL_STATE_DICT
ale_outputs/opendata-sft-lastmile
This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set:
- Loss: 2.2857
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 9e-06
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 32
- gradient_accumulation_steps: 8
- total_train_batch_size: 256
- total_eval_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: constant_with_warmup
- training_steps: 800
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0004 | 1 | 2.3001 |
1.9716 | 0.0432 | 100 | 2.2965 |
1.9648 | 0.0864 | 200 | 2.2945 |
1.9901 | 0.1296 | 300 | 2.2928 |
2.0033 | 0.1728 | 400 | 2.2915 |
1.9634 | 0.2160 | 500 | 2.2898 |
1.9957 | 0.2592 | 600 | 2.2882 |
1.9692 | 0.3023 | 700 | 2.2868 |
1.9827 | 0.3455 | 800 | 2.2857 |
Framework versions
- Transformers 4.56.2
- Pytorch 2.5.1+cu121
- Datasets 3.5.1
- Tokenizers 0.22.1
- Downloads last month
- 23