|
--- |
|
language: [] |
|
library_name: sentence-transformers |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- dataset_size:100K<n<1M |
|
- loss:CoSENTLoss |
|
metrics: |
|
- pearson_cosine |
|
- spearman_cosine |
|
- pearson_manhattan |
|
- spearman_manhattan |
|
- pearson_euclidean |
|
- spearman_euclidean |
|
- pearson_dot |
|
- spearman_dot |
|
- pearson_max |
|
- spearman_max |
|
base_model: distilbert/distilbert-base-uncased |
|
widget: |
|
- source_sentence: T L 2 DUMMY CHEST LAT WIDEBAND 90 Deg Front 2020 CX482 G-S |
|
sentences: |
|
- T L F DUMMY CHEST LAT WIDEBAND 90 Deg Front 2020.5 U625 G-S |
|
- T L F DUMMY HEAD CG LAT WIDEBAND Static Airbag OOP Test 2025 CX430 G-S |
|
- T R F DUMMY PELVIS LAT WIDEBAND 90 Deg Frontal Impact Simulation 2026 P800 G-S |
|
- source_sentence: T L F DUMMY CHEST LONG WIDEBAND 90 Deg Front 2022 U553 G-S |
|
sentences: |
|
- T R F TORSO BELT AT D RING LOAD WIDEBAND 90 Deg Front 2022 U553 LBF |
|
- T L F DUMMY L UP TIBIA MY LOAD WIDEBAND 90 Deg Front 2015 P552 IN-LBS |
|
- T R F DUMMY R UP TIBIA FX LOAD WIDEBAND 30 Deg Front Angular Left 2022 U554 LBF |
|
- source_sentence: T R F DUMMY PELVIS LAT WIDEBAND 90 Deg Front 2019 D544 G-S |
|
sentences: |
|
- T L F DUMMY PELVIS LAT WIDEBAND 90 Deg Front 2015 P552 G-S |
|
- T L LOWER CONTROL ARM VERT WIDEBAND Left Side Drop Test 2024.5 P702 G-S |
|
- F BARRIER PLATE 11030 SZ D FX LOAD WIDEBAND 90 Deg Front 2015 P552 LBF |
|
- source_sentence: T ENGINE ENGINE TOP LAT WIDEBAND 90 Deg Front 2015 P552 G-S |
|
sentences: |
|
- T R ENGINE TRANS BOTTOM LAT WIDEBAND 90 Deg Front 2015 P552 G-S |
|
- F BARRIER PLATE 09030 SZ D FX LOAD WIDEBAND 90 Deg Front 2015 P552 LBF |
|
- T R F DUMMY NECK UPPER MX LOAD WIDEBAND 90 Deg Front 2022 U554 IN-LBS |
|
- source_sentence: T L F DUMMY CHEST LAT WIDEBAND 90 Deg Front 2020 CX482 G-S |
|
sentences: |
|
- T R F DUMMY CHEST LAT WIDEBAND 90 Deg Front 2025 V363N G-S |
|
- T R F DUMMY HEAD CG VERT WIDEBAND VIA Linear Impact Test 2021 C727 G-S |
|
- T L F DUMMY T1 VERT WIDEBAND 75 Deg Oblique Left Side 10 in. Pole 2026 P800 G-S |
|
pipeline_tag: sentence-similarity |
|
model-index: |
|
- name: SentenceTransformer based on distilbert/distilbert-base-uncased |
|
results: |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts dev |
|
type: sts-dev |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.27051173706186693 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.2798593637893599 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.228702027931258 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.25353345676390787 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.23018017587211453 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.2550481010151111 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.2125353301405465 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.1902748420981738 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.27051173706186693 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.2798593637893599 |
|
name: Spearman Max |
|
- type: pearson_cosine |
|
value: 0.26319176781258086 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.2721909587247752 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.21766215319708615 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.2439514548051345 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.2195389492634635 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.24629153092425862 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.21073878591545503 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.1864889259868287 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.26319176781258086 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.2721909587247752 |
|
name: Spearman Max |
|
--- |
|
|
|
# SentenceTransformer based on distilbert/distilbert-base-uncased |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) <!-- at revision 12040accade4e8a0f71eabdb258fecc2e7e948be --> |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Output Dimensionality:** 768 tokens |
|
- **Similarity Function:** Cosine Similarity |
|
<!-- - **Training Dataset:** Unknown --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("sentence_transformers_model_id") |
|
# Run inference |
|
sentences = [ |
|
'T L F DUMMY CHEST LAT WIDEBAND 90 Deg Front 2020 CX482 G-S', |
|
'T R F DUMMY CHEST LAT WIDEBAND 90 Deg Front 2025 V363N G-S', |
|
'T R F DUMMY HEAD CG VERT WIDEBAND VIA Linear Impact Test 2021 C727 G-S', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 768] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-dev` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.2705 | |
|
| **spearman_cosine** | **0.2799** | |
|
| pearson_manhattan | 0.2287 | |
|
| spearman_manhattan | 0.2535 | |
|
| pearson_euclidean | 0.2302 | |
|
| spearman_euclidean | 0.255 | |
|
| pearson_dot | 0.2125 | |
|
| spearman_dot | 0.1903 | |
|
| pearson_max | 0.2705 | |
|
| spearman_max | 0.2799 | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-dev` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.2632 | |
|
| **spearman_cosine** | **0.2722** | |
|
| pearson_manhattan | 0.2177 | |
|
| spearman_manhattan | 0.244 | |
|
| pearson_euclidean | 0.2195 | |
|
| spearman_euclidean | 0.2463 | |
|
| pearson_dot | 0.2107 | |
|
| spearman_dot | 0.1865 | |
|
| pearson_max | 0.2632 | |
|
| spearman_max | 0.2722 | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### Unnamed Dataset |
|
|
|
|
|
* Size: 481,114 training samples |
|
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | sentence1 | sentence2 | score | |
|
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------| |
|
| type | string | string | float | |
|
| details | <ul><li>min: 16 tokens</li><li>mean: 32.14 tokens</li><li>max: 57 tokens</li></ul> | <ul><li>min: 17 tokens</li><li>mean: 32.62 tokens</li><li>max: 58 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.45</li><li>max: 1.0</li></ul> | |
|
* Samples: |
|
| sentence1 | sentence2 | score | |
|
|:------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------|:--------------------------------| |
|
| <code>T L C PLR SM SCS L2 HY REF 053 LAT WIDEBAND 75 Deg Oblique Left Side 10 in. Pole 2018 P558 G-S</code> | <code>T PCM PWR POWER TO PCM VOLT 2 SEC WIDEBAND 75 Deg Oblique Left Side 10 in. Pole 2020 V363N VOLTS</code> | <code>0.5198143220305642</code> | |
|
| <code>T L F DUMMY L_FEMUR MX LOAD WIDEBAND 90 Deg Frontal Impact Simulation MY2025 U717 IN-LBS</code> | <code>B L FRAME AT No 1 X MEM LAT WIDEBAND Inline 25% Left Front Offset Vehicle to Vehicle 2021 P702 G-S</code> | <code>0.5214072221695696</code> | |
|
| <code>T R F DOOR REAR OF SEAT H PT LAT WIDEBAND 75 Deg Oblique Right Side 10 in. Pole 2015 P552 G-S</code> | <code>T SCS R2 HY BOS A12 008 TAP RIGHT C PILLAR VOLT WIDEBAND 30 Deg Front Angular Right 2021 CX727 VOLTS</code> | <code>0.322173496575591</code> | |
|
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters: |
|
```json |
|
{ |
|
"scale": 20.0, |
|
"similarity_fct": "pairwise_cos_sim" |
|
} |
|
``` |
|
|
|
### Evaluation Dataset |
|
|
|
#### Unnamed Dataset |
|
|
|
|
|
* Size: 103,097 evaluation samples |
|
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | sentence1 | sentence2 | score | |
|
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------| |
|
| type | string | string | float | |
|
| details | <ul><li>min: 17 tokens</li><li>mean: 31.98 tokens</li><li>max: 56 tokens</li></ul> | <ul><li>min: 15 tokens</li><li>mean: 31.96 tokens</li><li>max: 58 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.45</li><li>max: 1.0</li></ul> | |
|
* Samples: |
|
| sentence1 | sentence2 | score | |
|
|:----------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------|:---------------------------------| |
|
| <code>T R F DUMMY NECK UPPER MZ LOAD WIDEBAND 90 Deg Frontal Impact Simulation 2026 GENERIC IN-LBS</code> | <code>T R ROCKER AT C PILLAR LAT WIDEBAND 90 Deg Front 2021 P702 G-S</code> | <code>0.5234504780172093</code> | |
|
| <code>T L ROCKER AT B_PILLAR VERT WIDEBAND 90 Deg Front 2024.5 P702 G-S</code> | <code>T RCM BTWN SEATS LOW G Z RCM C1 LZ ALV RC7 003 VOLT WIDEBAND 75 Deg Oblique Left Side 10 in. Pole 2018 P558 VOLTS</code> | <code>0.36805699821563936</code> | |
|
| <code>T R FRAME AT C_PILLAR LONG WIDEBAND 90 Deg Left Side IIHS MDB to Vehicle 2024.5 P702 G-S</code> | <code>T L F LAP BELT AT ANCHOR LOAD WIDEBAND 90 DEG / LEFT SIDE DECEL-3G 2021 P702 LBF</code> | <code>0.5309750606095435</code> | |
|
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters: |
|
```json |
|
{ |
|
"scale": 20.0, |
|
"similarity_fct": "pairwise_cos_sim" |
|
} |
|
``` |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `per_device_train_batch_size`: 64 |
|
- `per_device_eval_batch_size`: 64 |
|
- `num_train_epochs`: 32 |
|
- `warmup_ratio`: 0.1 |
|
- `fp16`: True |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 64 |
|
- `per_device_eval_batch_size`: 64 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `learning_rate`: 5e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1.0 |
|
- `num_train_epochs`: 32 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: linear |
|
- `warmup_ratio`: 0.1 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: True |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 7 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: True |
|
- `dataloader_num_workers`: 0 |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: False |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: False |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: False |
|
- `include_tokens_per_second`: False |
|
- `neftune_noise_alpha`: None |
|
- `batch_sampler`: batch_sampler |
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | Training Loss | loss | sts-dev_spearman_cosine | |
|
|:-------:|:-----:|:-------------:|:------:|:-----------------------:| |
|
| 1.0650 | 1000 | 7.6111 | 7.5503 | 0.4087 | |
|
| 2.1299 | 2000 | 7.5359 | 7.5420 | 0.4448 | |
|
| 3.1949 | 3000 | 7.5232 | 7.5292 | 0.4622 | |
|
| 4.2599 | 4000 | 7.5146 | 7.5218 | 0.4779 | |
|
| 5.3248 | 5000 | 7.5045 | 7.5200 | 0.4880 | |
|
| 6.3898 | 6000 | 7.4956 | 7.5191 | 0.4934 | |
|
| 7.4547 | 7000 | 7.4873 | 7.5170 | 0.4967 | |
|
| 8.5197 | 8000 | 7.4781 | 7.5218 | 0.4931 | |
|
| 9.5847 | 9000 | 7.4686 | 7.5257 | 0.4961 | |
|
| 10.6496 | 10000 | 7.4596 | 7.5327 | 0.4884 | |
|
| 11.7146 | 11000 | 7.4498 | 7.5403 | 0.4860 | |
|
| 12.7796 | 12000 | 7.4386 | 7.5507 | 0.4735 | |
|
| 13.8445 | 13000 | 7.4253 | 7.5651 | 0.4660 | |
|
| 14.9095 | 14000 | 7.4124 | 7.5927 | 0.4467 | |
|
| 15.9744 | 15000 | 7.3989 | 7.6054 | 0.4314 | |
|
| 17.0394 | 16000 | 7.3833 | 7.6654 | 0.4163 | |
|
| 18.1044 | 17000 | 7.3669 | 7.7186 | 0.3967 | |
|
| 19.1693 | 18000 | 7.3519 | 7.7653 | 0.3779 | |
|
| 20.2343 | 19000 | 7.3349 | 7.8356 | 0.3651 | |
|
| 21.2993 | 20000 | 7.3191 | 7.8772 | 0.3495 | |
|
| 22.3642 | 21000 | 7.3032 | 7.9346 | 0.3412 | |
|
| 23.4292 | 22000 | 7.2873 | 7.9624 | 0.3231 | |
|
| 24.4941 | 23000 | 7.2718 | 8.0169 | 0.3161 | |
|
| 25.5591 | 24000 | 7.2556 | 8.0633 | 0.3050 | |
|
| 26.6241 | 25000 | 7.2425 | 8.1021 | 0.2958 | |
|
| 27.6890 | 26000 | 7.2278 | 8.1563 | 0.2954 | |
|
| 28.7540 | 27000 | 7.2124 | 8.1955 | 0.2882 | |
|
| 29.8190 | 28000 | 7.2014 | 8.2234 | 0.2821 | |
|
| 30.8839 | 29000 | 7.1938 | 8.2447 | 0.2792 | |
|
| 31.9489 | 30000 | 7.1811 | 8.2609 | 0.2799 | |
|
| 32.0 | 30048 | - | - | 0.2722 | |
|
|
|
|
|
### Framework Versions |
|
- Python: 3.10.6 |
|
- Sentence Transformers: 3.0.0 |
|
- Transformers: 4.35.0 |
|
- PyTorch: 2.1.0a0+4136153 |
|
- Accelerate: 0.30.1 |
|
- Datasets: 2.14.1 |
|
- Tokenizers: 0.14.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
#### CoSENTLoss |
|
```bibtex |
|
@online{kexuefm-8847, |
|
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT}, |
|
author={Su Jianlin}, |
|
year={2022}, |
|
month={Jan}, |
|
url={https://kexue.fm/archives/8847}, |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |