language: en
tags:
- science
- multi-displinary
license: apache-2.0
ScholarBERT_1 Model
This is the ScholarBERT_1 variant of the ScholarBERT model family.
The model is pretrained on a large collection of scientific research articles (2.2B tokens).
This is a cased (case-sensitive) model. The tokenizer will not convert all inputs to lower-case by default.
The model is based on the same architecture as BERT-large and has a total of 340M parameters.
Model Architecture
Hyperparameter | Value |
---|---|
Layers | 24 |
Hidden Size | 1024 |
Attention Heads | 16 |
Total Parameters | 340M |
Training Dataset
The vocab and the model are pertrained on 1% of the PRD scientific literature dataset.
The PRD dataset is provided by Public.Resource.Org, Inc. (“Public Resource”), a nonprofit organization based in California. This dataset was constructed from a corpus of journal article files, from which We successfully extracted text from 75,496,055 articles from 178,928 journals. The articles span across Arts & Humanities, Life Sciences & Biomedicine, Physical Sciences, Social Sciences, and Technology. The distribution of articles is shown below.
BibTeX entry and citation info
If using this model, please cite this paper:
@misc{hong2022scholarbert,
doi = {10.48550/ARXIV.2205.11342},
url = {https://arxiv.org/abs/2205.11342},
author = {Hong, Zhi and Ajith, Aswathy and Pauloski, Gregory and Duede, Eamon and Malamud, Carl and Magoulas, Roger and Chard, Kyle and Foster, Ian},
title = {ScholarBERT: Bigger is Not Always Better},
publisher = {arXiv},
year = {2022}
}