ScholarBERT_1 / README.md
globuslabs's picture
Add Bibtex entry
fe60012
|
raw
history blame
1.84 kB
metadata
language: en
tags:
  - science
  - multi-displinary
license: apache-2.0

ScholarBERT_1 Model

This is the ScholarBERT_1 variant of the ScholarBERT model family.

The model is pretrained on a large collection of scientific research articles (2.2B tokens).

This is a cased (case-sensitive) model. The tokenizer will not convert all inputs to lower-case by default.

The model is based on the same architecture as BERT-large and has a total of 340M parameters.

Model Architecture

Hyperparameter Value
Layers 24
Hidden Size 1024
Attention Heads 16
Total Parameters 340M

Training Dataset

The vocab and the model are pertrained on 1% of the PRD scientific literature dataset.

The PRD dataset is provided by Public.Resource.Org, Inc. (“Public Resource”), a nonprofit organization based in California. This dataset was constructed from a corpus of journal article files, from which We successfully extracted text from 75,496,055 articles from 178,928 journals. The articles span across Arts & Humanities, Life Sciences & Biomedicine, Physical Sciences, Social Sciences, and Technology. The distribution of articles is shown below.

corpus pie chart

BibTeX entry and citation info

If using this model, please cite this paper:

@misc{hong2022scholarbert,
  doi = {10.48550/ARXIV.2205.11342},  
  url = {https://arxiv.org/abs/2205.11342},  
  author = {Hong, Zhi and Ajith, Aswathy and Pauloski, Gregory and Duede, Eamon and Malamud, Carl and Magoulas, Roger and Chard, Kyle and Foster, Ian},  
  title = {ScholarBERT: Bigger is Not Always Better},  
  publisher = {arXiv},  
  year = {2022}
}