segformer-b0-scene-parse-150
This model is a fine-tuned version of nvidia/mit-b0 on the scene_parse_150 dataset. It achieves the following results on the evaluation set:
- Loss: 3.6538
- Mean Iou: 0.0513
- Mean Accuracy: 0.1002
- Overall Accuracy: 0.3674
- Per Category Iou: [0.41523063020750783, 0.009939916202993341, 0.9051053539418947, 0.2405546042011158, 0.5592627102446484, 0.008100205817661452, 0.4158655729996604, 0.0, nan, 0.0, 0.0, 0.0, 0.1653567193403381, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.00014481591921904725, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, nan]
- Per Category Accuracy: [0.9111665467920647, 0.5584905660377358, 0.96496051635236, 0.7798917474318848, 0.9961487722881824, 0.008167736993524596, 0.4204927396509486, nan, nan, nan, 0.0, 0.0, 0.17034574845876305, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, 0.00014681348014681348, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, nan]
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Per Category Iou | Per Category Accuracy |
---|---|---|---|---|---|---|---|---|
3.2677 | 2.0 | 20 | 3.6205 | 0.0524 | 0.0966 | 0.3613 | [0.40213077197792346, 0.009939273919119628, 0.8721087225424647, 0.2050790121535925, 0.6743243243243243, 0.006688714489444168, 0.4140137237846719, 0.0, nan, 0.0, 0.0, 0.0, 0.15446220048180365, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.003601957810561147, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.00043712407329696463, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.03405304544848727, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, nan] | [0.9390478618316233, 0.46037735849056605, 0.972415533840551, 0.6499966195928399, 0.9874249968083748, 0.006809416501144552, 0.4243094579335574, nan, nan, nan, 0.0, 0.0, 0.1590859588814076, nan, 0.0, 0.0, nan, 0.0, nan, 0.003607242099449421, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.00043712407329696463, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.03405304544848727, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, nan] |
3.1569 | 4.0 | 40 | 3.6538 | 0.0513 | 0.1002 | 0.3674 | [0.41523063020750783, 0.009939916202993341, 0.9051053539418947, 0.2405546042011158, 0.5592627102446484, 0.008100205817661452, 0.4158655729996604, 0.0, nan, 0.0, 0.0, 0.0, 0.1653567193403381, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.00014481591921904725, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, nan] | [0.9111665467920647, 0.5584905660377358, 0.96496051635236, 0.7798917474318848, 0.9961487722881824, 0.008167736993524596, 0.4204927396509486, nan, nan, nan, 0.0, 0.0, 0.17034574845876305, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, 0.00014681348014681348, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, nan] |
Framework versions
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 4
Model tree for gogobattle/segformer-b0-scene-parse-150
Base model
nvidia/mit-b0