gokuls's picture
update model card README.md
cc50a7e
metadata
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: bert_12_layer_model_v1_complete_training
    results: []

bert_12_layer_model_v1_complete_training

This model is a fine-tuned version of on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.7148
  • Accuracy: 0.6576

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 10
  • distributed_type: multi-GPU
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 10000
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy
6.1779 0.11 10000 6.1719 0.1487
4.6914 0.22 20000 4.5039 0.3178
3.2325 0.33 30000 3.0977 0.4772
2.831 0.44 40000 2.7266 0.5224
2.6262 0.55 50000 2.5371 0.5455
2.5006 0.66 60000 2.4141 0.5614
2.4062 0.76 70000 2.3242 0.5734
2.3338 0.87 80000 2.2539 0.5823
2.2838 0.98 90000 2.2012 0.5894
2.231 1.09 100000 2.1504 0.5959
2.1903 1.2 110000 2.1133 0.6009
2.1594 1.31 120000 2.0801 0.6054
2.1307 1.42 130000 2.0488 0.6095
2.0948 1.53 140000 2.0234 0.6133
2.0748 1.64 150000 1.9980 0.6169
2.0572 1.75 160000 1.9756 0.6195
2.0359 1.86 170000 1.9551 0.6225
2.0148 1.97 180000 1.9385 0.6251
1.9994 2.08 190000 1.9219 0.6274
1.9769 2.18 200000 1.9043 0.6297
1.9705 2.29 210000 1.8916 0.6317
1.9557 2.4 220000 1.8779 0.6338
1.9407 2.51 230000 1.8643 0.6354
1.9307 2.62 240000 1.8525 0.6372
1.9186 2.73 250000 1.8408 0.6388
1.9114 2.84 260000 1.8320 0.6401
1.896 2.95 270000 1.8213 0.6419
1.8857 3.06 280000 1.8115 0.6433
1.8752 3.17 290000 1.8037 0.6443
1.8662 3.28 300000 1.7949 0.6457
1.8575 3.39 310000 1.7871 0.6470
1.8538 3.5 320000 1.7793 0.6478
1.8426 3.6 330000 1.7734 0.6489
1.8389 3.71 340000 1.7646 0.6501
1.8278 3.82 350000 1.7598 0.6511
1.8319 3.93 360000 1.7529 0.6520
1.8203 4.04 370000 1.7471 0.6527
1.8162 4.15 380000 1.7412 0.6536
1.8113 4.26 390000 1.7373 0.6543
1.8055 4.37 400000 1.7324 0.6551
1.7991 4.48 410000 1.7285 0.6556
1.7965 4.59 420000 1.7246 0.6562
1.7938 4.7 430000 1.7207 0.6567
1.793 4.81 440000 1.7178 0.6571
1.7848 4.92 450000 1.7148 0.6576

Framework versions

  • Transformers 4.26.1
  • Pytorch 1.14.0a0+410ce96
  • Datasets 2.10.1
  • Tokenizers 0.13.2