gokuls's picture
End of training
3c4ce5e
|
raw
history blame
2.31 kB
metadata
license: apache-2.0
base_model: google/bert_uncased_L-2_H-128_A-2
tags:
  - generated_from_trainer
datasets:
  - emotion
metrics:
  - accuracy
model-index:
  - name: bert_uncased_L-2_H-128_A-2_emotion
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: emotion
          type: emotion
          config: split
          split: validation
          args: split
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.893

bert_uncased_L-2_H-128_A-2_emotion

This model is a fine-tuned version of google/bert_uncased_L-2_H-128_A-2 on the emotion dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3583
  • Accuracy: 0.893

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 33
  • distributed_type: multi-GPU
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.5403 1.0 250 1.3422 0.554
1.1641 2.0 500 0.9492 0.6855
0.8396 3.0 750 0.6949 0.796
0.6356 4.0 1000 0.5556 0.8485
0.517 5.0 1250 0.4748 0.868
0.4351 6.0 1500 0.4231 0.8845
0.393 7.0 1750 0.3877 0.8875
0.3641 8.0 2000 0.3767 0.891
0.3462 9.0 2250 0.3621 0.8925
0.3352 10.0 2500 0.3583 0.893

Framework versions

  • Transformers 4.34.0
  • Pytorch 1.14.0a0+410ce96
  • Datasets 2.14.5
  • Tokenizers 0.14.1