bert_uncased_L-4_H-256_A-4_emotion
This model is a fine-tuned version of google/bert_uncased_L-4_H-256_A-4 on the emotion dataset. It achieves the following results on the evaluation set:
- Loss: 0.1849
- Accuracy: 0.9285
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 33
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.1299 | 1.0 | 250 | 0.6133 | 0.817 |
0.4479 | 2.0 | 500 | 0.2998 | 0.9105 |
0.2611 | 3.0 | 750 | 0.2220 | 0.92 |
0.1968 | 4.0 | 1000 | 0.1864 | 0.9255 |
0.1557 | 5.0 | 1250 | 0.1803 | 0.928 |
0.1344 | 6.0 | 1500 | 0.1828 | 0.9265 |
0.1204 | 7.0 | 1750 | 0.1849 | 0.9285 |
0.1098 | 8.0 | 2000 | 0.1828 | 0.9225 |
0.1005 | 9.0 | 2250 | 0.1760 | 0.9275 |
0.0922 | 10.0 | 2500 | 0.1768 | 0.9275 |
Framework versions
- Transformers 4.34.0
- Pytorch 1.14.0a0+410ce96
- Datasets 2.14.5
- Tokenizers 0.14.1
- Downloads last month
- 137
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for gokuls/bert_uncased_L-4_H-256_A-4_emotion
Base model
google/bert_uncased_L-4_H-256_A-4