|
--- |
|
library_name: transformers |
|
language: |
|
- en |
|
license: apache-2.0 |
|
base_model: google/bert_uncased_L-4_H-256_A-4 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- glue |
|
metrics: |
|
- matthews_correlation |
|
- accuracy |
|
model-index: |
|
- name: bert_uncased_L-4_H-256_A-4_cola |
|
results: |
|
- task: |
|
name: Text Classification |
|
type: text-classification |
|
dataset: |
|
name: GLUE COLA |
|
type: glue |
|
args: cola |
|
metrics: |
|
- name: Matthews Correlation |
|
type: matthews_correlation |
|
value: 0.2650812590803394 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.7027804255485535 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# bert_uncased_L-4_H-256_A-4_cola |
|
|
|
This model is a fine-tuned version of [google/bert_uncased_L-4_H-256_A-4](https://huggingface.co/google/bert_uncased_L-4_H-256_A-4) on the GLUE COLA dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.5943 |
|
- Matthews Correlation: 0.2651 |
|
- Accuracy: 0.7028 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 256 |
|
- eval_batch_size: 256 |
|
- seed: 10 |
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- num_epochs: 50 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------------------:|:--------:| |
|
| 0.6358 | 1.0 | 34 | 0.6182 | 0.0 | 0.6913 | |
|
| 0.6077 | 2.0 | 68 | 0.6184 | 0.0 | 0.6913 | |
|
| 0.5982 | 3.0 | 102 | 0.6035 | 0.0 | 0.6913 | |
|
| 0.575 | 4.0 | 136 | 0.5997 | 0.1458 | 0.7009 | |
|
| 0.5391 | 5.0 | 170 | 0.5992 | 0.2018 | 0.7028 | |
|
| 0.4999 | 6.0 | 204 | 0.6159 | 0.2088 | 0.7085 | |
|
| 0.4722 | 7.0 | 238 | 0.5974 | 0.2782 | 0.7248 | |
|
| 0.4437 | 8.0 | 272 | 0.5943 | 0.2651 | 0.7028 | |
|
| 0.4204 | 9.0 | 306 | 0.6239 | 0.2618 | 0.7210 | |
|
| 0.3956 | 10.0 | 340 | 0.6360 | 0.2655 | 0.7191 | |
|
| 0.3671 | 11.0 | 374 | 0.6876 | 0.2592 | 0.7200 | |
|
| 0.3546 | 12.0 | 408 | 0.7041 | 0.2665 | 0.7239 | |
|
| 0.333 | 13.0 | 442 | 0.6849 | 0.2891 | 0.7229 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.46.3 |
|
- Pytorch 2.2.1+cu118 |
|
- Datasets 2.17.0 |
|
- Tokenizers 0.20.3 |
|
|