|
--- |
|
library_name: transformers |
|
language: |
|
- en |
|
license: apache-2.0 |
|
base_model: google/bert_uncased_L-4_H-256_A-4 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- glue |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: bert_uncased_L-4_H-256_A-4_mnli |
|
results: |
|
- task: |
|
name: Text Classification |
|
type: text-classification |
|
dataset: |
|
name: GLUE MNLI |
|
type: glue |
|
args: mnli |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.7651545972335232 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# bert_uncased_L-4_H-256_A-4_mnli |
|
|
|
This model is a fine-tuned version of [google/bert_uncased_L-4_H-256_A-4](https://huggingface.co/google/bert_uncased_L-4_H-256_A-4) on the GLUE MNLI dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.5852 |
|
- Accuracy: 0.7652 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 256 |
|
- eval_batch_size: 256 |
|
- seed: 10 |
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- num_epochs: 50 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:-----:|:---------------:|:--------:| |
|
| 0.7878 | 1.0 | 1534 | 0.7087 | 0.7007 | |
|
| 0.6683 | 2.0 | 3068 | 0.6437 | 0.7296 | |
|
| 0.6112 | 3.0 | 4602 | 0.6204 | 0.7465 | |
|
| 0.5683 | 4.0 | 6136 | 0.6099 | 0.7553 | |
|
| 0.532 | 5.0 | 7670 | 0.6147 | 0.7572 | |
|
| 0.4997 | 6.0 | 9204 | 0.6381 | 0.7552 | |
|
| 0.4707 | 7.0 | 10738 | 0.6196 | 0.7588 | |
|
| 0.4436 | 8.0 | 12272 | 0.6404 | 0.7589 | |
|
| 0.4187 | 9.0 | 13806 | 0.6584 | 0.7608 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.46.3 |
|
- Pytorch 2.2.1+cu118 |
|
- Datasets 2.17.0 |
|
- Tokenizers 0.20.3 |
|
|