bert_uncased_L-4_H-256_A-4_qnli
This model is a fine-tuned version of google/bert_uncased_L-4_H-256_A-4 on the GLUE QNLI dataset. It achieves the following results on the evaluation set:
- Loss: 0.3597
- Accuracy: 0.8413
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 256
- eval_batch_size: 256
- seed: 10
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.4733 | 1.0 | 410 | 0.3915 | 0.8301 |
0.4054 | 2.0 | 820 | 0.3684 | 0.8373 |
0.3655 | 3.0 | 1230 | 0.3597 | 0.8413 |
0.3295 | 4.0 | 1640 | 0.3785 | 0.8384 |
0.2935 | 5.0 | 2050 | 0.3842 | 0.8384 |
0.2649 | 6.0 | 2460 | 0.4055 | 0.8382 |
0.2359 | 7.0 | 2870 | 0.4254 | 0.8332 |
0.212 | 8.0 | 3280 | 0.4672 | 0.8365 |
Framework versions
- Transformers 4.46.3
- Pytorch 2.2.1+cu118
- Datasets 2.17.0
- Tokenizers 0.20.3
- Downloads last month
- 104
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for gokulsrinivasagan/bert_uncased_L-4_H-256_A-4_qnli
Base model
google/bert_uncased_L-4_H-256_A-4