bert_uncased_L-4_H-256_A-4_sst2
This model is a fine-tuned version of google/bert_uncased_L-4_H-256_A-4 on the GLUE SST2 dataset. It achieves the following results on the evaluation set:
- Loss: 0.3628
- Accuracy: 0.8429
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 256
- eval_batch_size: 256
- seed: 10
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.4143 | 1.0 | 264 | 0.4119 | 0.8131 |
0.2672 | 2.0 | 528 | 0.3628 | 0.8429 |
0.2117 | 3.0 | 792 | 0.3785 | 0.8498 |
0.1736 | 4.0 | 1056 | 0.4139 | 0.8475 |
0.1493 | 5.0 | 1320 | 0.4231 | 0.8532 |
0.1294 | 6.0 | 1584 | 0.4411 | 0.8544 |
0.1159 | 7.0 | 1848 | 0.4575 | 0.8589 |
Framework versions
- Transformers 4.46.3
- Pytorch 2.2.1+cu118
- Datasets 2.17.0
- Tokenizers 0.20.3
- Downloads last month
- 109
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for gokulsrinivasagan/bert_uncased_L-4_H-256_A-4_sst2
Base model
google/bert_uncased_L-4_H-256_A-4