metadata
language:
- nl
license: apache-2.0
base_model: openai/whisper-large-v2
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: Whisper Large V2
results: []
Whisper Large V2
This model is a fine-tuned version of openai/whisper-large-v2 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1599
- Wer: 7.6743
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 20
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.4382 | 0.38 | 30 | 0.1844 | 8.1741 |
0.1791 | 0.75 | 60 | 0.1583 | 6.5941 |
0.1281 | 1.12 | 90 | 0.1565 | 8.4160 |
0.0742 | 1.5 | 120 | 0.1515 | 6.2797 |
0.0767 | 1.88 | 150 | 0.1464 | 6.3603 |
0.05 | 2.25 | 180 | 0.1570 | 9.4478 |
0.0312 | 2.62 | 210 | 0.1557 | 6.1185 |
0.0321 | 3.0 | 240 | 0.1465 | 5.3043 |
0.0144 | 3.38 | 270 | 0.1585 | 5.3607 |
0.0153 | 3.75 | 300 | 0.1531 | 5.9331 |
0.011 | 4.12 | 330 | 0.1532 | 5.5220 |
0.0071 | 4.5 | 360 | 0.1592 | 6.8440 |
0.0061 | 4.88 | 390 | 0.1599 | 7.6743 |
Framework versions
- Transformers 4.38.0.dev0
- Pytorch 2.1.0+cu121
- Datasets 2.14.6
- Tokenizers 0.15.0