Edit model card

Whisper Large V2

This model is a fine-tuned version of openai/whisper-large-v2 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3388
  • Wer: 15.6433

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 12
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 20
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Wer
0.5957 0.0460 15 0.4410 43.4046
0.3883 0.0920 30 0.3673 22.6793
0.3351 0.1380 45 0.3537 24.6421
0.3154 0.1840 60 0.3425 25.5344
0.3082 0.2301 75 0.3368 29.2401
0.2981 0.2761 90 0.3236 22.7442
0.2828 0.3221 105 0.3184 25.2616
0.3101 0.3681 120 0.3168 18.5215
0.3008 0.4141 135 0.3162 19.1299
0.3016 0.4601 150 0.3065 23.6178
0.3093 0.5061 165 0.3099 18.7668
0.3004 0.5521 180 0.3043 20.1939
0.2837 0.5982 195 0.3053 22.6716
0.2927 0.6442 210 0.2989 19.6217
0.2705 0.6902 225 0.2962 20.1708
0.2916 0.7362 240 0.2904 19.4490
0.275 0.7822 255 0.2936 18.2101
0.2631 0.8282 270 0.2894 18.1221
0.2582 0.8742 285 0.2885 21.2325
0.2482 0.9202 300 0.2944 17.5918
0.2675 0.9663 315 0.2876 26.0615
0.2324 1.0123 330 0.2833 20.3391
0.1474 1.0583 345 0.2872 20.8177
0.1524 1.1043 360 0.2831 19.1409
0.1506 1.1503 375 0.2829 17.8338
0.1572 1.1963 390 0.2841 17.8151
0.1478 1.2423 405 0.2798 15.7544
0.1426 1.2883 420 0.2781 17.4455
0.1458 1.3344 435 0.2817 21.0058
0.131 1.3804 450 0.2856 18.7790
0.1307 1.4264 465 0.2841 17.2848
0.1541 1.4724 480 0.2838 15.8820
0.1417 1.5184 495 0.2900 19.0276
0.128 1.5644 510 0.2877 17.3684
0.1538 1.6104 525 0.2748 17.0010
0.1223 1.6564 540 0.2768 18.1177
0.127 1.7025 555 0.2754 18.2926
0.1336 1.7485 570 0.2746 19.0507
0.1411 1.7945 585 0.2724 16.7644
0.1318 1.8405 600 0.2729 17.3156
0.1491 1.8865 615 0.2708 17.7282
0.1284 1.9325 630 0.2720 15.0931
0.1237 1.9785 645 0.2674 17.0087
0.113 2.0245 660 0.2808 17.8030
0.0696 2.0706 675 0.2846 16.9426
0.0751 2.1166 690 0.2830 15.9029
0.071 2.1626 705 0.2837 16.7622
0.071 2.2086 720 0.2905 19.0826
0.071 2.2546 735 0.2818 20.2808
0.0591 2.3006 750 0.2850 16.9217
0.057 2.3466 765 0.2844 15.5530
0.068 2.3926 780 0.2772 16.7105
0.0736 2.4387 795 0.2784 14.5430
0.067 2.4847 810 0.2839 15.2582
0.0716 2.5307 825 0.2794 18.2013
0.0761 2.5767 840 0.2754 15.0271
0.0686 2.6227 855 0.2775 15.3385
0.0724 2.6687 870 0.2775 15.1779
0.0702 2.7147 885 0.2805 18.0418
0.0654 2.7607 900 0.2811 16.0889
0.0719 2.8067 915 0.2802 15.6246
0.0738 2.8528 930 0.2742 16.8755
0.0593 2.8988 945 0.2810 15.6345
0.062 2.9448 960 0.2750 14.8610
0.0702 2.9908 975 0.2751 15.1316
0.0458 3.0368 990 0.2896 14.5958
0.0304 3.0828 1005 0.3012 18.4544
0.0327 3.1288 1020 0.2996 18.2343
0.0321 3.1748 1035 0.2937 15.0667
0.0292 3.2209 1050 0.2989 14.5760
0.0285 3.2669 1065 0.3009 21.4988
0.027 3.3129 1080 0.3014 15.0469
0.0257 3.3589 1095 0.2979 16.9371
0.0338 3.4049 1110 0.2928 16.9922
0.0298 3.4509 1125 0.3017 17.3508
0.024 3.4969 1140 0.3006 15.2098
0.0281 3.5429 1155 0.2994 15.4507
0.0256 3.5890 1170 0.2994 14.5023
0.0229 3.6350 1185 0.3007 15.9777
0.0336 3.6810 1200 0.3005 16.0393
0.0262 3.7270 1215 0.3028 15.3539
0.0254 3.7730 1230 0.2965 15.2923
0.0297 3.8190 1245 0.2968 15.2318
0.0244 3.8650 1260 0.3017 15.7203
0.0254 3.9110 1275 0.3008 15.3858
0.0297 3.9571 1290 0.2945 16.1384
0.0216 4.0031 1305 0.2965 14.6816
0.0105 4.0491 1320 0.3202 14.2581
0.0112 4.0951 1335 0.3319 14.1689
0.0107 4.1411 1350 0.3256 14.2437
0.0091 4.1871 1365 0.3261 14.3560
0.0082 4.2331 1380 0.3325 14.2735
0.0096 4.2791 1395 0.3356 15.0887
0.0107 4.3252 1410 0.3372 14.5980
0.0087 4.3712 1425 0.3399 14.7697
0.0114 4.4172 1440 0.3387 15.6224
0.0069 4.4632 1455 0.3371 15.2032
0.0075 4.5092 1470 0.3384 15.5563
0.0076 4.5552 1485 0.3375 15.8842
0.0061 4.6012 1500 0.3389 15.6213
0.0068 4.6472 1515 0.3404 15.4518
0.0095 4.6933 1530 0.3373 15.3594
0.0093 4.7393 1545 0.3353 15.5156
0.0098 4.7853 1560 0.3367 15.7368
0.0072 4.8313 1575 0.3374 15.9799
0.0062 4.8773 1590 0.3389 15.6719
0.0072 4.9233 1605 0.3392 15.7841
0.0089 4.9693 1620 0.3388 15.6433

Framework versions

  • Transformers 4.44.0.dev0
  • Pytorch 2.1.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
31
Safetensors
Model size
1.54B params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for golesheed/whisper-v2-Hollandic_WestFrisian_WestUtrecht

Finetuned
(182)
this model