merve HF staff nielsr HF staff commited on
Commit
1aabc4e
1 Parent(s): 8607e89

Update code snippet (#4)

Browse files

- Update code snippet (ec0a6725512f93501782ab17e3f6647f6aa6ec96)


Co-authored-by: Niels Rogge <nielsr@users.noreply.huggingface.co>

Files changed (1) hide show
  1. README.md +8 -26
README.md CHANGED
@@ -34,12 +34,11 @@ The model uses a CLIP backbone with a ViT-L/14 Transformer architecture as an im
34
  ```python
35
  import requests
36
  from PIL import Image
37
- import numpy as np
38
  import torch
39
- from transformers import AutoProcessor, Owlv2ForObjectDetection
40
- from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD
41
 
42
- processor = AutoProcessor.from_pretrained("google/owlv2-large-patch14")
 
 
43
  model = Owlv2ForObjectDetection.from_pretrained("google/owlv2-large-patch14")
44
 
45
  url = "http://images.cocodataset.org/val2017/000000039769.jpg"
@@ -47,33 +46,16 @@ image = Image.open(requests.get(url, stream=True).raw)
47
  texts = [["a photo of a cat", "a photo of a dog"]]
48
  inputs = processor(text=texts, images=image, return_tensors="pt")
49
 
50
- # forward pass
51
  with torch.no_grad():
52
- outputs = model(**inputs)
53
-
54
- # Note: boxes need to be visualized on the padded, unnormalized image
55
- # hence we'll set the target image sizes (height, width) based on that
56
-
57
- def get_preprocessed_image(pixel_values):
58
- pixel_values = pixel_values.squeeze().numpy()
59
- unnormalized_image = (pixel_values * np.array(OPENAI_CLIP_STD)[:, None, None]) + np.array(OPENAI_CLIP_MEAN)[:, None, None]
60
- unnormalized_image = (unnormalized_image * 255).astype(np.uint8)
61
- unnormalized_image = np.moveaxis(unnormalized_image, 0, -1)
62
- unnormalized_image = Image.fromarray(unnormalized_image)
63
- return unnormalized_image
64
-
65
- unnormalized_image = get_preprocessed_image(inputs.pixel_values)
66
-
67
- target_sizes = torch.Tensor([unnormalized_image.size[::-1]])
68
- # Convert outputs (bounding boxes and class logits) to final bounding boxes and scores
69
- results = processor.post_process_object_detection(
70
- outputs=outputs, threshold=0.2, target_sizes=target_sizes
71
- )
72
 
 
 
 
 
73
  i = 0 # Retrieve predictions for the first image for the corresponding text queries
74
  text = texts[i]
75
  boxes, scores, labels = results[i]["boxes"], results[i]["scores"], results[i]["labels"]
76
-
77
  for box, score, label in zip(boxes, scores, labels):
78
  box = [round(i, 2) for i in box.tolist()]
79
  print(f"Detected {text[label]} with confidence {round(score.item(), 3)} at location {box}")
 
34
  ```python
35
  import requests
36
  from PIL import Image
 
37
  import torch
 
 
38
 
39
+ from transformers import Owlv2Processor, Owlv2ForObjectDetection
40
+
41
+ processor = Owlv2Processor.from_pretrained("google/owlv2-large-patch14")
42
  model = Owlv2ForObjectDetection.from_pretrained("google/owlv2-large-patch14")
43
 
44
  url = "http://images.cocodataset.org/val2017/000000039769.jpg"
 
46
  texts = [["a photo of a cat", "a photo of a dog"]]
47
  inputs = processor(text=texts, images=image, return_tensors="pt")
48
 
 
49
  with torch.no_grad():
50
+ outputs = model(**inputs)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51
 
52
+ # Target image sizes (height, width) to rescale box predictions [batch_size, 2]
53
+ target_sizes = torch.Tensor([image.size[::-1]])
54
+ # Convert outputs (bounding boxes and class logits) to Pascal VOC Format (xmin, ymin, xmax, ymax)
55
+ results = processor.post_process_object_detection(outputs=outputs, target_sizes=target_sizes, threshold=0.1)
56
  i = 0 # Retrieve predictions for the first image for the corresponding text queries
57
  text = texts[i]
58
  boxes, scores, labels = results[i]["boxes"], results[i]["scores"], results[i]["labels"]
 
59
  for box, score, label in zip(boxes, scores, labels):
60
  box = [round(i, 2) for i in box.tolist()]
61
  print(f"Detected {text[label]} with confidence {round(score.item(), 3)} at location {box}")