|
--- |
|
license: apache-2.0 |
|
datasets: |
|
- asset |
|
- wi_locness |
|
- GEM/wiki_auto_asset_turk |
|
- discofuse |
|
- zaemyung/IteraTeR_plus |
|
- jfleg |
|
language: |
|
- en |
|
metrics: |
|
- sari |
|
- bleu |
|
- accuracy |
|
--- |
|
# Model Card for CoEdIT-Large |
|
|
|
This model was obtained by fine-tuning the corresponding `google/flan-t5-large` model on the CoEdIT dataset. Details of the dataset can be found in our paper and repository. |
|
|
|
**Paper:** CoEdIT: Text Editing by Task-Specific Instruction Tuning |
|
|
|
**Authors:** Vipul Raheja, Dhruv Kumar, Ryan Koo, Dongyeop Kang |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
|
|
- **Language(s) (NLP)**: English |
|
- **Finetuned from model:** google/flan-t5-large |
|
|
|
### Model Sources |
|
|
|
- **Repository:** https://github.com/vipulraheja/coedit |
|
- **Paper:** https://arxiv.org/abs/2305.09857 |
|
|
|
## How to use |
|
We make available the models presented in our paper. |
|
|
|
<table> |
|
<tr> |
|
<th>Model</th> |
|
<th>Number of parameters</th> |
|
</tr> |
|
<tr> |
|
<td>CoEdIT-large</td> |
|
<td>770M</td> |
|
</tr> |
|
<tr> |
|
<td>CoEdIT-xl</td> |
|
<td>3B</td> |
|
</tr> |
|
<tr> |
|
<td>CoEdIT-xxl</td> |
|
<td>11B</td> |
|
</tr> |
|
</table> |
|
|
|
|
|
## Uses |
|
|
|
## Text Revision Task |
|
Given an edit instruction and an original text, our model can generate the edited version of the text.<br> |
|
|
|
![task_specs](https://huggingface.co/grammarly/coedit-xl/resolve/main/task_examples.png) |
|
|
|
## Usage |
|
```python |
|
from transformers import AutoTokenizer, T5ForConditionalGeneration |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("grammarly/coedit-large") |
|
model = T5ForConditionalGeneration.from_pretrained("grammarly/coedit-large") |
|
input_text = 'Fix grammatical errors in this sentence: New kinds of vehicles will be invented with new technology than today.' |
|
input_ids = tokenizer(input_text, return_tensors="pt").input_ids |
|
outputs = model.generate(input_ids, max_length=256) |
|
edited_text = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
``` |
|
|
|
|
|
#### Software |
|
https://github.com/vipulraheja/coedit |
|
|
|
## Citation |
|
|
|
**BibTeX:** |
|
@article{raheja2023coedit, |
|
title={CoEdIT: Text Editing by Task-Specific Instruction Tuning}, |
|
author={Vipul Raheja and Dhruv Kumar and Ryan Koo and Dongyeop Kang}, |
|
year={2023}, |
|
eprint={2305.09857}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
|
|
**APA:** |
|
Raheja, V., Kumar, D., Koo, R., & Kang, D. (2023). CoEdIT: Text Editing by Task-Specific Instruction Tuning. ArXiv. /abs/2305.09857 |
|
|