greenw0lf's picture
update model card README.md
9429cf2
|
raw
history blame
4.48 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - common_voice_8_0
metrics:
  - wer
model-index:
  - name: wav2vec2-large-xls-r-1b-frisian-cv-8
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice_8_0
          type: common_voice_8_0
          config: fy-NL
          split: validation
          args: fy-NL
        metrics:
          - name: Wer
            type: wer
            value: 0.1339808598771604

wav2vec2-large-xls-r-1b-frisian-cv-8

This model is a fine-tuned version of facebook/wav2vec2-xls-r-1b on the common_voice_8_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2054
  • Wer: 0.1340

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 80
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
3.0483 1.72 200 3.0438 1.0
2.6284 3.45 400 1.1501 0.9229
1.4359 5.17 600 0.5618 0.5329
1.1366 6.9 800 0.3899 0.3845
0.988 8.62 1000 0.3370 0.3302
0.8377 10.34 1200 0.2765 0.2834
0.8001 12.07 1400 0.2750 0.2438
0.8678 13.79 1600 0.2258 0.2160
0.7023 15.52 1800 0.2260 0.2072
0.8111 17.24 2000 0.2223 0.2070
0.658 18.97 2200 0.2121 0.1834
0.6574 20.69 2400 0.2136 0.1812
0.7521 22.41 2600 0.2175 0.1775
0.6515 24.14 2800 0.2018 0.1718
0.6955 25.86 3000 0.2121 0.1863
0.6605 27.59 3200 0.2003 0.1607
0.5403 29.31 3400 0.2042 0.1668
0.5064 31.03 3600 0.2021 0.1616
0.6811 32.76 3800 0.2026 0.1668
0.6787 34.48 4000 0.2122 0.1613
0.5595 36.21 4200 0.2001 0.1547
0.5225 37.93 4400 0.1992 0.1615
0.5522 39.66 4600 0.2023 0.1603
0.5364 41.38 4800 0.1992 0.1531
0.5157 43.1 5000 0.2060 0.1550
0.4382 44.83 5200 0.1985 0.1427
0.3658 46.55 5400 0.1964 0.1427
0.5336 48.28 5600 0.2143 0.1471
0.5479 50.0 5800 0.1962 0.1402
0.5203 51.72 6000 0.2022 0.1418
0.363 53.45 6200 0.2103 0.1429
0.3828 55.17 6400 0.2070 0.1417
0.3875 56.9 6600 0.2070 0.1411
0.3433 58.62 6800 0.2049 0.1418
0.2826 60.34 7000 0.2047 0.1417
0.294 62.07 7200 0.2022 0.1369
0.2776 63.79 7400 0.2115 0.1365
0.3178 65.52 7600 0.2005 0.1377
0.2913 67.24 7800 0.2047 0.1355
0.2642 68.97 8000 0.2069 0.1338
0.255 70.69 8200 0.2041 0.1336
0.2746 72.41 8400 0.2064 0.1331
0.2485 74.14 8600 0.2068 0.1327
0.2741 75.86 8800 0.2073 0.1331
0.2223 77.59 9000 0.2055 0.1338
0.2327 79.31 9200 0.2054 0.1340

Framework versions

  • Transformers 4.28.1
  • Pytorch 2.0.0+cu117
  • Datasets 2.11.0
  • Tokenizers 0.13.3