metadata
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- common_voice_8_0
metrics:
- wer
model-index:
- name: wav2vec2-large-xls-r-1b-frisian-cv-8
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: common_voice_8_0
type: common_voice_8_0
config: fy-NL
split: validation
args: fy-NL
metrics:
- name: Wer
type: wer
value: 0.1339808598771604
wav2vec2-large-xls-r-1b-frisian-cv-8
This model is a fine-tuned version of facebook/wav2vec2-xls-r-1b on the common_voice_8_0 dataset. It achieves the following results on the evaluation set:
- Loss: 0.2054
- Wer: 0.1340
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 80
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
3.0483 | 1.72 | 200 | 3.0438 | 1.0 |
2.6284 | 3.45 | 400 | 1.1501 | 0.9229 |
1.4359 | 5.17 | 600 | 0.5618 | 0.5329 |
1.1366 | 6.9 | 800 | 0.3899 | 0.3845 |
0.988 | 8.62 | 1000 | 0.3370 | 0.3302 |
0.8377 | 10.34 | 1200 | 0.2765 | 0.2834 |
0.8001 | 12.07 | 1400 | 0.2750 | 0.2438 |
0.8678 | 13.79 | 1600 | 0.2258 | 0.2160 |
0.7023 | 15.52 | 1800 | 0.2260 | 0.2072 |
0.8111 | 17.24 | 2000 | 0.2223 | 0.2070 |
0.658 | 18.97 | 2200 | 0.2121 | 0.1834 |
0.6574 | 20.69 | 2400 | 0.2136 | 0.1812 |
0.7521 | 22.41 | 2600 | 0.2175 | 0.1775 |
0.6515 | 24.14 | 2800 | 0.2018 | 0.1718 |
0.6955 | 25.86 | 3000 | 0.2121 | 0.1863 |
0.6605 | 27.59 | 3200 | 0.2003 | 0.1607 |
0.5403 | 29.31 | 3400 | 0.2042 | 0.1668 |
0.5064 | 31.03 | 3600 | 0.2021 | 0.1616 |
0.6811 | 32.76 | 3800 | 0.2026 | 0.1668 |
0.6787 | 34.48 | 4000 | 0.2122 | 0.1613 |
0.5595 | 36.21 | 4200 | 0.2001 | 0.1547 |
0.5225 | 37.93 | 4400 | 0.1992 | 0.1615 |
0.5522 | 39.66 | 4600 | 0.2023 | 0.1603 |
0.5364 | 41.38 | 4800 | 0.1992 | 0.1531 |
0.5157 | 43.1 | 5000 | 0.2060 | 0.1550 |
0.4382 | 44.83 | 5200 | 0.1985 | 0.1427 |
0.3658 | 46.55 | 5400 | 0.1964 | 0.1427 |
0.5336 | 48.28 | 5600 | 0.2143 | 0.1471 |
0.5479 | 50.0 | 5800 | 0.1962 | 0.1402 |
0.5203 | 51.72 | 6000 | 0.2022 | 0.1418 |
0.363 | 53.45 | 6200 | 0.2103 | 0.1429 |
0.3828 | 55.17 | 6400 | 0.2070 | 0.1417 |
0.3875 | 56.9 | 6600 | 0.2070 | 0.1411 |
0.3433 | 58.62 | 6800 | 0.2049 | 0.1418 |
0.2826 | 60.34 | 7000 | 0.2047 | 0.1417 |
0.294 | 62.07 | 7200 | 0.2022 | 0.1369 |
0.2776 | 63.79 | 7400 | 0.2115 | 0.1365 |
0.3178 | 65.52 | 7600 | 0.2005 | 0.1377 |
0.2913 | 67.24 | 7800 | 0.2047 | 0.1355 |
0.2642 | 68.97 | 8000 | 0.2069 | 0.1338 |
0.255 | 70.69 | 8200 | 0.2041 | 0.1336 |
0.2746 | 72.41 | 8400 | 0.2064 | 0.1331 |
0.2485 | 74.14 | 8600 | 0.2068 | 0.1327 |
0.2741 | 75.86 | 8800 | 0.2073 | 0.1331 |
0.2223 | 77.59 | 9000 | 0.2055 | 0.1338 |
0.2327 | 79.31 | 9200 | 0.2054 | 0.1340 |
Framework versions
- Transformers 4.28.1
- Pytorch 2.0.0+cu117
- Datasets 2.11.0
- Tokenizers 0.13.3