greenw0lf's picture
Update README.md
3d9cf41
|
raw
history blame
3.55 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_12_0
metrics:
  - wer
model-index:
  - name: wav2vec2-large-xls-r-1b-frisian
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice_12_0
          type: common_voice_12_0
          config: fy-NL
          split: test
          args: fy-NL
        metrics:
          - name: Wer
            type: wer
            value: 0.15990775235054105
language:
  - fy

wav2vec2-large-xls-r-1b-frisian

This model is a fine-tuned version of facebook/wav2vec2-xls-r-1b on the common_voice_12_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2634
  • WER: 0.1599

This model was developed together with golesheed for the course "Speech Recognition II" of the "MSc Voice Technology" program at Rijksuniversiteit Groningen - Campus Fryslân.

Intended uses & limitations

Intended use is for recognizing Frisian speech.

Limitations include not enough hyperparameter tuning, no LM rescoring, and using v12 of Common Voice instead of v13.

Training and evaluation data

Training and evaluation splits used are the ones available in the Common Voice dataset.

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 8e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 50
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
4.7284 2.1 250 2.9453 1.0
1.7496 4.2 500 0.5141 0.4771
0.8168 6.3 750 0.3220 0.3148
0.7403 8.4 1000 0.2988 0.2573
0.7298 10.5 1250 0.2794 0.2347
0.6303 12.61 1500 0.2577 0.2164
0.5201 14.71 1750 0.2746 0.2162
0.5189 16.81 2000 0.2543 0.2034
0.5054 18.91 2250 0.2847 0.2071
0.5112 21.01 2500 0.2772 0.1979
0.5105 23.11 2750 0.2633 0.1920
0.5032 25.21 3000 0.2667 0.1856
0.46 27.31 3250 0.2730 0.1852
0.4992 29.41 3500 0.2626 0.1782
0.4535 31.51 3750 0.2778 0.1749
0.4036 33.61 4000 0.2825 0.1747
0.3347 35.71 4250 0.2797 0.1708
0.2708 37.82 4500 0.2662 0.1712
0.1825 39.92 4750 0.2652 0.1648
0.1654 42.02 5000 0.2719 0.1628
0.1387 44.12 5250 0.2552 0.1607
0.1367 46.22 5500 0.2641 0.1591
0.1218 48.32 5750 0.2634 0.1598

Framework versions

  • Transformers 4.27.3
  • Pytorch 2.0.0+cu117
  • Datasets 2.10.1
  • Tokenizers 0.13.2