metadata
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- common_voice_12_0
metrics:
- wer
model-index:
- name: wav2vec2-large-xls-r-1b-frisian
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: common_voice_12_0
type: common_voice_12_0
config: fy-NL
split: validation
args: fy-NL
metrics:
- name: Wer
type: wer
value: 0.1685917915949865
wav2vec2-large-xls-r-1b-frisian
This model is a fine-tuned version of facebook/wav2vec2-xls-r-1b on the common_voice_12_0 dataset. It achieves the following results on the evaluation set:
- Loss: 0.2748
- Wer: 0.1686
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 50
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
4.6809 | 2.1 | 250 | 2.0948 | 0.9948 |
1.2928 | 4.2 | 500 | 0.4505 | 0.4003 |
0.7887 | 6.3 | 750 | 0.3410 | 0.3287 |
0.7422 | 8.4 | 1000 | 0.3017 | 0.2756 |
0.7277 | 10.5 | 1250 | 0.3014 | 0.2624 |
0.6339 | 12.61 | 1500 | 0.2833 | 0.2398 |
0.5284 | 14.71 | 1750 | 0.2970 | 0.2404 |
0.5186 | 16.81 | 2000 | 0.2886 | 0.2400 |
0.515 | 18.91 | 2250 | 0.2891 | 0.2335 |
0.5199 | 21.01 | 2500 | 0.2985 | 0.2261 |
0.5228 | 23.11 | 2750 | 0.3026 | 0.2187 |
0.5102 | 25.21 | 3000 | 0.2829 | 0.1994 |
0.463 | 27.31 | 3250 | 0.2885 | 0.2012 |
0.5072 | 29.41 | 3500 | 0.2936 | 0.1971 |
0.4581 | 31.51 | 3750 | 0.2979 | 0.1912 |
0.4103 | 33.61 | 4000 | 0.2935 | 0.1875 |
0.3414 | 35.71 | 4250 | 0.2999 | 0.1860 |
0.4484 | 37.82 | 4500 | 0.2917 | 0.1810 |
0.3523 | 39.92 | 4750 | 0.2875 | 0.1759 |
0.3763 | 42.02 | 5000 | 0.2901 | 0.1758 |
0.2416 | 44.12 | 5250 | 0.2707 | 0.1740 |
0.1878 | 46.22 | 5500 | 0.2707 | 0.1717 |
0.1623 | 48.32 | 5750 | 0.2748 | 0.1686 |
Framework versions
- Transformers 4.27.3
- Pytorch 2.0.0+cu117
- Datasets 2.10.1
- Tokenizers 0.13.2