greenw0lf's picture
update model card README.md
f464d34
|
raw
history blame
3.16 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - common_voice_12_0
metrics:
  - wer
model-index:
  - name: wav2vec2-large-xls-r-1b-frisian
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice_12_0
          type: common_voice_12_0
          config: fy-NL
          split: validation
          args: fy-NL
        metrics:
          - name: Wer
            type: wer
            value: 0.1685917915949865

wav2vec2-large-xls-r-1b-frisian

This model is a fine-tuned version of facebook/wav2vec2-xls-r-1b on the common_voice_12_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2748
  • Wer: 0.1686

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 50
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
4.6809 2.1 250 2.0948 0.9948
1.2928 4.2 500 0.4505 0.4003
0.7887 6.3 750 0.3410 0.3287
0.7422 8.4 1000 0.3017 0.2756
0.7277 10.5 1250 0.3014 0.2624
0.6339 12.61 1500 0.2833 0.2398
0.5284 14.71 1750 0.2970 0.2404
0.5186 16.81 2000 0.2886 0.2400
0.515 18.91 2250 0.2891 0.2335
0.5199 21.01 2500 0.2985 0.2261
0.5228 23.11 2750 0.3026 0.2187
0.5102 25.21 3000 0.2829 0.1994
0.463 27.31 3250 0.2885 0.2012
0.5072 29.41 3500 0.2936 0.1971
0.4581 31.51 3750 0.2979 0.1912
0.4103 33.61 4000 0.2935 0.1875
0.3414 35.71 4250 0.2999 0.1860
0.4484 37.82 4500 0.2917 0.1810
0.3523 39.92 4750 0.2875 0.1759
0.3763 42.02 5000 0.2901 0.1758
0.2416 44.12 5250 0.2707 0.1740
0.1878 46.22 5500 0.2707 0.1717
0.1623 48.32 5750 0.2748 0.1686

Framework versions

  • Transformers 4.27.3
  • Pytorch 2.0.0+cu117
  • Datasets 2.10.1
  • Tokenizers 0.13.2