greerben0's picture
Update README.md
f7ea5ec verified
|
raw
history blame
4.04 kB
metadata
tags:
  - stable-diffusion-xl
  - stable-diffusion-xl-diffusers
  - diffusers-training
  - text-to-image
  - diffusers
  - lora
  - template:sd-lora
widget:
  - text: a LEO cat on the floor
    output:
      url: image_0.png
  - text: a LEO cat on the floor
    output:
      url: image_1.png
  - text: a LEO cat on the floor
    output:
      url: image_2.png
  - text: a LEO cat on the floor
    output:
      url: image_3.png
  - text: a LEO cat in a bucket on the beach
    output:
      url: image_6.png
  - text: Image LEO cat on a boat
    output:
      url: image_5.png
  - text: a LEO cat on the floor
    output:
      url: image_4.png
base_model: stabilityai/stable-diffusion-xl-base-1.0
instance_prompt: photo of a LEO cat
license: openrail++

SDXL LoRA DreamBooth - greerben0/leo-cat-sdxl-lora-v2

Prompt
a LEO cat in a bucket on the beach
Prompt
Image LEO cat on a boat
Prompt
a LEO cat on the floor
Prompt
a LEO cat on the floor
Prompt
a LEO cat on the floor
Prompt
a LEO cat on the floor
Prompt
a LEO cat on the floor
Prompt
a LEO cat casting satanic spells, renaissance style

Model description

These are greerben0/leo-cat-sdxl-lora-v2 LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.

Download model

Use it with UIs such as AUTOMATIC1111, Comfy UI, SD.Next, Invoke

Use it with the 🧨 diffusers library

from diffusers import AutoPipelineForText2Image
import torch
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
        
pipeline = AutoPipelineForText2Image.from_pretrained('stabilityai/stable-diffusion-xl-base-1.0', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('greerben0/leo-cat-sdxl-lora-v2', weight_name='pytorch_lora_weights.safetensors')
embedding_path = hf_hub_download(repo_id='greerben0/leo-cat-sdxl-lora-v2', filename='leo-cat-sdxl-lora-v2_emb.safetensors', repo_type="model")
state_dict = load_file(embedding_path)
pipeline.load_textual_inversion(state_dict["clip_l"], token=[], text_encoder=pipeline.text_encoder, tokenizer=pipeline.tokenizer)
pipeline.load_textual_inversion(state_dict["clip_g"], token=[], text_encoder=pipeline.text_encoder_2, tokenizer=pipeline.tokenizer_2)
        
image = pipeline('a LEO cat on the floor').images[0]

For more details, including weighting, merging and fusing LoRAs, check the documentation on loading LoRAs in diffusers

Trigger words

To trigger image generation of trained concept(or concepts) replace each concept identifier in you prompt with the new inserted tokens:

to trigger concept TOK → use <s0><s1> in your prompt

Details

All Files & versions.

The weights were trained using 🧨 diffusers Advanced Dreambooth Training Script.

LoRA for the text encoder was enabled. False.

Pivotal tuning was enabled: True.

Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.