trey-cat-sdxl-lora / README.md
greerben0's picture
Update README.md
e52ff62 verified
|
raw
history blame
3.61 kB
---
tags:
- stable-diffusion-xl
- stable-diffusion-xl-diffusers
- diffusers-training
- text-to-image
- diffusers
- lora
- template:sd-lora
widget:
- text: >-
Photo of TREY cat as a guitarist, on stage, awesome, photorealistic,
pyrotechnics, highly detailed
output:
url: download (3).png
- text: a TREY cat on the floor
output:
url: image_0.png
- text: a TREY cat on the floor
output:
url: image_1.png
- text: a TREY cat on the floor
output:
url: image_2.png
- text: Imagine TREY cat in an alien hellscape
output:
url: 7cf5c0e2-84a9-4d7a-91fc-40179b805c1b.jpeg
base_model: stabilityai/stable-diffusion-xl-base-1.0
instance_prompt: photo of a TREY cat
license: openrail++
pipeline_tag: text-to-image
---
# SDXL LoRA DreamBooth - trey-cat-sdxl-lora
<Gallery />
## Model description
### These are trey-cat-sdxl-lora LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.
## Download model
### Use it with UIs such as AUTOMATIC1111, Comfy UI, SD.Next, Invoke
- **LoRA**: download **[`trey-cat-sdxl-lora.safetensors` here 💾](/trey-cat-sdxl-lora/blob/main/trey-cat-sdxl-lora.safetensors)**.
- Place it on your `models/Lora` folder.
- On AUTOMATIC1111, load the LoRA by adding `<lora:trey-cat-sdxl-lora:1>` to your prompt. On ComfyUI just [load it as a regular LoRA](https://comfyanonymous.github.io/ComfyUI_examples/lora/).
- *Embeddings*: download **[`trey-cat-sdxl-lora_emb.safetensors` here 💾](/trey-cat-sdxl-lora/blob/main/trey-cat-sdxl-lora_emb.safetensors)**.
- Place it on it on your `embeddings` folder
- Use it by adding `trey-cat-sdxl-lora_emb` to your prompt. For example, `photo of a TREY cat`
(you need both the LoRA and the embeddings as they were trained together for this LoRA)
## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)
```py
from diffusers import AutoPipelineForText2Image
import torch
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
pipeline = AutoPipelineForText2Image.from_pretrained('stabilityai/stable-diffusion-xl-base-1.0', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('trey-cat-sdxl-lora', weight_name='pytorch_lora_weights.safetensors')
embedding_path = hf_hub_download(repo_id='trey-cat-sdxl-lora', filename='trey-cat-sdxl-lora_emb.safetensors', repo_type="model")
state_dict = load_file(embedding_path)
pipeline.load_textual_inversion(state_dict["clip_l"], token=[], text_encoder=pipeline.text_encoder, tokenizer=pipeline.tokenizer)
pipeline.load_textual_inversion(state_dict["clip_g"], token=[], text_encoder=pipeline.text_encoder_2, tokenizer=pipeline.tokenizer_2)
image = pipeline('a TREY cat on the floor').images[0]
```
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
## Trigger words
To trigger image generation of trained concept(or concepts) replace each concept identifier in you prompt with the new inserted tokens:
to trigger concept `Trey cat` → use `TREY cat` in your prompt
## Details
All [Files & versions](/trey-cat-sdxl-lora/tree/main).
The weights were trained using [🧨 diffusers Advanced Dreambooth Training Script](https://github.com/huggingface/diffusers/blob/main/examples/advanced_diffusion_training/train_dreambooth_lora_sdxl_advanced.py).
LoRA for the text encoder was enabled. False.
Pivotal tuning was enabled: True.
Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.