metadata
tags:
- asteroid
- audio
- ConvTasNet
- audio-source-separation
datasets:
- wham
- sep_clean
license: cc-by-sa-3.0
inference: false
Asteroid model mpariente/ConvTasNet_WHAM_sepclean
Imported from Zenodo
Description:
This model was trained by Manuel Pariente
using the wham/ConvTasNet recipe in Asteroid.
It was trained on the sep_clean
task of the WHAM! dataset.
Training config:
data:
channels: 1
n_src: 2
root_path: data
sample_rate: 16000
samples_per_track: 10
segment: 3.0
task: enh_both
filterbank:
kernel_size: 20
n_filters: 256
stride: 10
main_args:
exp_dir: exp/train_convtasnet
help: None
masknet:
bn_chan: 256
conv_kernel_size: 3
hid_chan: 512
mask_act: relu
n_blocks: 8
n_repeats: 4
n_src: 2
norm_type: gLN
skip_chan: 256
optim:
lr: 0.0003
optimizer: adam
weight_decay: 0.0
positional arguments:
training:
batch_size: 12
early_stop: True
epochs: 50
half_lr: True
num_workers: 12
Results:
si_sdr: 14.018196157142519
si_sdr_imp: 14.017103133809577
sdr: 14.498517291333885
sdr_imp: 14.463389151567865
sir: 24.149634529133372
sir_imp: 24.11450638936735
sar: 15.338597389045935
sar_imp: -137.30634122401517
stoi: 0.7639416744417206
stoi_imp: 0.1843383526963759
License notice:
This work "ConvTasNet_DAMP-VSEP_enhboth" is a derivative of DAMP-VSEP: Smule Digital Archive of Mobile Performances - Vocal Separation (Version 1.0.1) by Smule, Inc, used under Smule's Research Data License Agreement (Research only). "ConvTasNet_DAMP-VSEP_enhboth" is licensed under Attribution-ShareAlike 3.0 Unported by Gerardo Roa Dabike.