ClipEAU is a fine-tuned version of ClipEAU-vit-base-patch32-2025_11_03_55901-bs32_freeze. It achieves the following results on the test set:

  • Loss: 0.1981
  • F1 Micro: 0.6811
  • F1 Macro: 0.4890
  • Accuracy: 0.1745
Class F1 per class
Acropore_branched 0.6435
Acropore_digitised 0.3536
Acropore_sub_massive 0.1806
Acropore_tabular 0.7672
Algae_assembly 0.7188
Algae_drawn_up 0.3009
Algae_limestone 0.6345
Algae_sodding 0.7843
Atra/Leucospilota 0.4893
Bleached_coral 0.5588
Blurred 0.1871
Dead_coral 0.6294
Fish 0.5666
Homo_sapiens 0.5225
Human_object 0.6444
Living_coral 0.5072
Millepore 0.4047
No_acropore_encrusting 0.5487
No_acropore_foliaceous 0.6034
No_acropore_massive 0.5000
No_acropore_solitary 0.2667
No_acropore_sub_massive 0.5328
Rock 0.8336
Rubble 0.6817
Sand 0.8700
Sea_cucumber 0.5231
Sea_urchins 0.4375
Sponge 0.3228
Syringodium_isoetifolium 0.8362
Thalassodendron_ciliatum 0.7737
Useless 0.8626

Model description

ClipEAU is a model built on top of ClipEAU-vit-base-patch32-2025_11_03_55901-bs32_freeze model for underwater multilabel image classification.The classification head is a combination of linear, ReLU, batch normalization, and dropout layers.

The source code for training the model can be found in this Git repository.


Intended uses & limitations

You can use the raw model for classify diverse marine species, encompassing coral morphotypes classes taken from the Global Coral Reef Monitoring Network (GCRMN), habitats classes and seagrass species.


Training and evaluation data

Details on the number of images for each class are given in the following table:

Class train test val Total
Acropore_branched 1480 469 459 2408
Acropore_digitised 571 156 161 888
Acropore_sub_massive 150 52 41 243
Acropore_tabular 999 292 298 1589
Algae_assembly 2554 842 842 4238
Algae_drawn_up 367 130 123 620
Algae_limestone 1651 562 559 2772
Algae_sodding 3142 994 981 5117
Atra/Leucospilota 1084 349 359 1792
Bleached_coral 219 69 72 360
Blurred 191 68 61 320
Dead_coral 1980 648 636 3264
Fish 2018 661 642 3321
Homo_sapiens 161 63 58 282
Human_object 156 55 59 270
Living_coral 397 151 153 701
Millepore 386 127 124 637
No_acropore_encrusting 442 141 142 725
No_acropore_foliaceous 204 47 35 286
No_acropore_massive 1030 341 334 1705
No_acropore_solitary 202 55 46 303
No_acropore_sub_massive 1402 428 426 2256
Rock 4481 1495 1481 7457
Rubble 3092 1015 1016 5123
Sand 5839 1945 1935 9719
Sea_cucumber 1407 437 450 2294
Sea_urchins 328 110 107 545
Sponge 267 98 105 470
Syringodium_isoetifolium 1213 392 390 1995
Thalassodendron_ciliatum 781 262 260 1303
Useless 579 193 193 965

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • Number of Epochs: 89.0
  • Learning Rate: 0.001
  • Train Batch Size: 32
  • Eval Batch Size: 32
  • Optimizer: Adam
  • LR Scheduler Type: ReduceLROnPlateau with a patience of 5 epochs and a factor of 0.1
  • Freeze Encoder: Yes
  • Data Augmentation: Yes

Data Augmentation

Data were augmented using the following transformations :

Train Transforms

  • PreProcess: No additional parameters
  • Resize: probability=1.00
  • RandomHorizontalFlip: probability=0.25
  • RandomVerticalFlip: probability=0.25
  • ColorJiggle: probability=0.25
  • RandomPerspective: probability=0.25
  • Normalize: probability=1.00

Val Transforms

  • PreProcess: No additional parameters
  • Resize: probability=1.00
  • Normalize: probability=1.00

Training results

Epoch Validation Loss Accuracy F1 Macro F1 Micro Learning Rate
1 0.2755436599254608 0.0548 0.4870 0.1841 0.001
2 0.27313947677612305 0.1061 0.4816 0.2190 0.001
3 0.24732808768749237 0.1092 0.5586 0.2896 0.001
4 0.24704696238040924 0.1131 0.5864 0.3132 0.001
5 0.23763391375541687 0.1155 0.5996 0.3203 0.001
6 0.24488729238510132 0.1005 0.5455 0.2758 0.001
7 0.23577998578548431 0.1316 0.5706 0.3076 0.001
8 0.23298335075378418 0.1257 0.5880 0.3409 0.001
9 0.2437519133090973 0.1201 0.5783 0.3233 0.001
10 0.2337779998779297 0.1257 0.5844 0.3481 0.001
11 0.22841598093509674 0.1281 0.5768 0.3405 0.001
12 0.23676042258739471 0.1295 0.6101 0.3479 0.001
13 0.22685056924819946 0.1323 0.6174 0.3855 0.001
14 0.22243528068065643 0.1354 0.6163 0.3304 0.001
15 0.2308577597141266 0.1309 0.6026 0.3426 0.001
16 0.22836312651634216 0.1379 0.5836 0.3525 0.001
17 0.22632907330989838 0.1211 0.6431 0.4095 0.001
18 0.22169864177703857 0.1431 0.6216 0.4108 0.001
19 0.22429880499839783 0.1469 0.6158 0.3903 0.001
20 0.22168485820293427 0.1497 0.6244 0.4109 0.001
21 0.2181965708732605 0.1585 0.6275 0.4087 0.001
22 0.21742750704288483 0.1459 0.6402 0.4088 0.001
23 0.21984589099884033 0.1508 0.6372 0.4019 0.001
24 0.21336357295513153 0.1431 0.6349 0.4086 0.001
25 0.215973362326622 0.1581 0.6435 0.4073 0.001
26 0.21738594770431519 0.1627 0.6428 0.4412 0.001
27 0.21718686819076538 0.1515 0.6318 0.4376 0.001
28 0.2167457938194275 0.1469 0.6548 0.4502 0.001
29 0.21596720814704895 0.1602 0.6239 0.3974 0.001
30 0.21519586443901062 0.1609 0.6316 0.4272 0.001
31 0.20102238655090332 0.1742 0.6709 0.4708 0.0001
32 0.20028482377529144 0.1728 0.6652 0.4765 0.0001
33 0.2016177624464035 0.1658 0.6587 0.4668 0.0001
34 0.20070569217205048 0.1703 0.6587 0.4671 0.0001
35 0.19858147203922272 0.1749 0.6693 0.4791 0.0001
36 0.19878427684307098 0.1696 0.6671 0.4713 0.0001
37 0.19879288971424103 0.1728 0.6705 0.4824 0.0001
38 0.2002326399087906 0.1756 0.6662 0.4798 0.0001
39 0.19776451587677002 0.1759 0.6704 0.4807 0.0001
40 0.1989012360572815 0.1735 0.6743 0.4826 0.0001
41 0.19757546484470367 0.1735 0.6745 0.4863 0.0001
42 0.19867026805877686 0.1742 0.6701 0.4850 0.0001
43 0.1974734216928482 0.1794 0.6762 0.4756 0.0001
44 0.19798807799816132 0.1805 0.6740 0.4820 0.0001
45 0.19826450943946838 0.1784 0.6741 0.4701 0.0001
46 0.19794772565364838 0.1787 0.6769 0.4901 0.0001
47 0.19794227182865143 0.1787 0.6791 0.4937 0.0001
48 0.19741104543209076 0.1759 0.6829 0.4981 0.0001
49 0.20017848908901215 0.1798 0.6696 0.4878 0.0001
50 0.19828735291957855 0.1773 0.6832 0.4995 0.0001
51 0.19745203852653503 0.1846 0.6785 0.4869 0.0001
52 0.19813166558742523 0.1728 0.6823 0.4954 0.0001
53 0.19777563214302063 0.1808 0.6811 0.5010 0.0001
54 0.19714485108852386 0.1777 0.6781 0.4998 0.0001
55 0.19739548861980438 0.1745 0.6773 0.5015 0.0001
56 0.19639085233211517 0.1784 0.6791 0.4859 0.0001
57 0.19614720344543457 0.1770 0.6806 0.4934 0.0001
58 0.19727133214473724 0.1763 0.6767 0.4840 0.0001
59 0.19701360166072845 0.1846 0.6769 0.4857 0.0001
60 0.19576512277126312 0.1777 0.6786 0.4898 0.0001
61 0.19700495898723602 0.1805 0.6852 0.5093 0.0001
62 0.19687828421592712 0.1766 0.6834 0.5009 0.0001
63 0.1967148333787918 0.1752 0.6849 0.4928 0.0001
64 0.19667862355709076 0.1805 0.6781 0.4918 0.0001
65 0.196905255317688 0.1766 0.6804 0.4911 0.0001
66 0.19522123038768768 0.1770 0.6867 0.5141 0.0001
67 0.196974515914917 0.1780 0.6882 0.5127 0.0001
68 0.19643187522888184 0.1791 0.6864 0.4956 0.0001
69 0.19658857583999634 0.1801 0.6844 0.4981 0.0001
70 0.19634096324443817 0.1794 0.6814 0.5045 0.0001
71 0.19620731472969055 0.1818 0.6840 0.4957 0.0001
72 0.19560062885284424 0.1791 0.6827 0.4968 0.0001
73 0.19446241855621338 0.1881 0.6876 0.5035 1e-05
74 0.19424258172512054 0.1850 0.6874 0.5037 1e-05
75 0.19434040784835815 0.1839 0.6882 0.5094 1e-05
76 0.19450798630714417 0.1850 0.6868 0.5042 1e-05
77 0.19437134265899658 0.1885 0.6882 0.5141 1e-05
78 0.1945873498916626 0.1871 0.6889 0.5078 1e-05
79 0.19400206208229065 0.1885 0.6889 0.5101 1e-05
80 0.19423776865005493 0.1867 0.6893 0.5123 1e-05
81 0.1944921761751175 0.1878 0.6877 0.5087 1e-05
82 0.19430173933506012 0.1846 0.6872 0.5094 1e-05
83 0.19456203281879425 0.1832 0.6894 0.5132 1e-05
84 0.19433410465717316 0.1850 0.6899 0.5093 1e-05
85 0.1942111849784851 0.1846 0.6872 0.5088 1e-05
86 0.19422636926174164 0.1857 0.6889 0.5119 1.0000000000000002e-06
87 0.19421224296092987 0.1839 0.6895 0.5124 1.0000000000000002e-06
88 0.19428525865077972 0.1867 0.6892 0.5130 1.0000000000000002e-06
89 0.19422417879104614 0.1853 0.6894 0.5122 1.0000000000000002e-06

Framework Versions

  • Transformers: 4.56.0.dev0
  • Pytorch: 2.6.0+cu124
  • Datasets: 3.0.2
  • Tokenizers: 0.21.0
Downloads last month
6
Safetensors
Model size
87.5M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Evaluation results