SegIGNCoral-b0-2025_10_09_40484-bs16_refine is a fine-tuned version of nvidia/mit-b0.
Model description
SegIGNCoral-b0-2025_10_09_40484-bs16_refine is a model built on top of nvidia/mit-b0 model for aerial image segmentation.
The source code for training the model can be found in this Git repository.
- Developed by: lombardata, credits to CΓ©sar Leblanc and Victor Illien
Intended uses & limitations
You can use the raw model for classify diverse marine species, encompassing coral morphotypes classes taken from the Global Coral Reef Monitoring Network (GCRMN), habitats classes and seagrass species.
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- Number of Epochs: 175.0
- Learning Rate: 1e-05
- Train Batch Size: 16
- Eval Batch Size: 16
- Optimizer: Adam
- LR Scheduler Type: ReduceLROnPlateau with a patience of 5 epochs and a factor of 0.1
- Freeze Encoder: No
- Data Augmentation: No
Training results
Evaluate on training set.
{
"SegIGNCoral-b0-2025_10_09_40484-bs16_refine": {
"pixel_acc": 0.8066,
"mean_iou": 0.5697,
"iou_per_class": {
"Acropora Branching": 0.6439,
"Non-acropora Massive": 0.2779,
"Other Corals": 0.3327,
"Sand": 0.821,
"Seagrass": 0.7729
}
}
}
Evaluate on manually annotate zone.
π Evaluating zone: hermitage
β
Pixel Accuracy: 0.8814
β
Mean Accuracy : 0.3494
β
Mean IoU : 0.3283
Pixel Accuracy Per Class:
Acropora Branching: 0.0000
Non-acropora Massive: 0.0000
Other Corals: 0.0000
Sand: 0.9011
Syringodium: 0.8457
IoU Per Class:
Acropora Branching: 0.0000
Non-acropora Massive: 0.0000
Other Corals: 0.0000
Sand: 0.8805
Syringodium: 0.7611
π Evaluating zone: troudeau
β
Pixel Accuracy: 0.8389
β
Mean Accuracy : 0.5461
β
Mean IoU : 0.3493
Pixel Accuracy Per Class:
Acropora Branching: 0.5263
Non-acropora Massive: 0.3429
Other Corals: 0.4113
Sand: 0.9040
IoU Per Class:
Acropora Branching: 0.0481
Non-acropora Massive: 0.1714
Other Corals: 0.2827
Sand: 0.8949
π Evaluating zone: stleu
β
Pixel Accuracy: 0.6907
β
Mean Accuracy : 0.6036
β
Mean IoU : 0.3995
Pixel Accuracy Per Class:
Acropora Branching: 0.9457
Non-acropora Massive: 0.5060
Other Corals: 0.1624
Sand: 0.8006
IoU Per Class:
Acropora Branching: 0.3820
Non-acropora Massive: 0.3172
Other Corals: 0.1358
Sand: 0.7631
π¦ Micro-Averaged Metrics Across Zones (all pixels):
Pixel Accuracy Per Class:
Acropora Branching: 0.9351
Non-acropora Massive: 0.4778
Other Corals: 0.2117
Sand: 0.8996
Syringodium: 0.8457
IoU Per Class:
Acropora Branching: 0.0906
Non-acropora Massive: 0.1418
Other Corals: 0.0172
Sand: 0.8788
Syringodium: 0.7611
β
Pixel Accuracy: 0.8781
β
Mean Accuracy : 0.6740
β
Mean IoU : 0.3779
| Epoch | Validation Loss | Learning Rate |
|---|---|---|
| 1.0 | 0.17825450003147125 | 1e-05 |
| 2.0 | 0.17652319371700287 | 1e-05 |
| 3.0 | 0.17437469959259033 | 1e-05 |
| 4.0 | 0.17109064757823944 | 1e-05 |
| 5.0 | 0.16746488213539124 | 1e-05 |
| 6.0 | 0.1647380143404007 | 1e-05 |
| 7.0 | 0.1629670113325119 | 1e-05 |
| 8.0 | 0.16162735223770142 | 1e-05 |
| 9.0 | 0.16086645424365997 | 1e-05 |
| 10.0 | 0.1595691293478012 | 1e-05 |
| 11.0 | 0.1584334373474121 | 1e-05 |
| 12.0 | 0.15793322026729584 | 1e-05 |
| 13.0 | 0.15778672695159912 | 1e-05 |
| 14.0 | 0.1567489206790924 | 1e-05 |
| 15.0 | 0.15607595443725586 | 1e-05 |
| 16.0 | 0.15554767847061157 | 1e-05 |
| 17.0 | 0.1547158807516098 | 1e-05 |
| 18.0 | 0.1543949544429779 | 1e-05 |
| 19.0 | 0.15392234921455383 | 1e-05 |
| 20.0 | 0.15279631316661835 | 1e-05 |
| 21.0 | 0.15245354175567627 | 1e-05 |
| 22.0 | 0.152305468916893 | 1e-05 |
| 23.0 | 0.15164558589458466 | 1e-05 |
| 24.0 | 0.15041886270046234 | 1e-05 |
| 25.0 | 0.1490705907344818 | 1e-05 |
| 26.0 | 0.14869147539138794 | 1e-05 |
| 27.0 | 0.14790189266204834 | 1e-05 |
| 28.0 | 0.146309033036232 | 1e-05 |
| 29.0 | 0.14488185942173004 | 1e-05 |
| 30.0 | 0.14381851255893707 | 1e-05 |
| 31.0 | 0.14236079156398773 | 1e-05 |
| 32.0 | 0.14145053923130035 | 1e-05 |
| 33.0 | 0.14065156877040863 | 1e-05 |
| 34.0 | 0.14140239357948303 | 1e-05 |
| 35.0 | 0.13949288427829742 | 1e-05 |
| 36.0 | 0.13923388719558716 | 1e-05 |
| 37.0 | 0.1388508528470993 | 1e-05 |
| 38.0 | 0.1380811184644699 | 1e-05 |
| 39.0 | 0.13670456409454346 | 1e-05 |
| 40.0 | 0.13674621284008026 | 1e-05 |
| 41.0 | 0.13670817017555237 | 1e-05 |
| 42.0 | 0.13663434982299805 | 1e-05 |
| 43.0 | 0.1345621645450592 | 1e-05 |
| 44.0 | 0.1353185921907425 | 1e-05 |
| 45.0 | 0.13393084704875946 | 1e-05 |
| 46.0 | 0.13347546756267548 | 1e-05 |
| 47.0 | 0.13446684181690216 | 1e-05 |
| 48.0 | 0.13390202820301056 | 1e-05 |
| 49.0 | 0.1328386515378952 | 1e-05 |
| 50.0 | 0.13314343988895416 | 1e-05 |
| 51.0 | 0.13273906707763672 | 1e-05 |
| 52.0 | 0.13288834691047668 | 1e-05 |
| 53.0 | 0.13220956921577454 | 1e-05 |
| 54.0 | 0.13126344978809357 | 1e-05 |
| 55.0 | 0.131490096449852 | 1e-05 |
| 56.0 | 0.13168570399284363 | 1e-05 |
| 57.0 | 0.13094131648540497 | 1e-05 |
| 58.0 | 0.13041794300079346 | 1e-05 |
| 59.0 | 0.12996184825897217 | 1e-05 |
| 60.0 | 0.13028591871261597 | 1e-05 |
| 61.0 | 0.1296725869178772 | 1e-05 |
| 62.0 | 0.1295732855796814 | 1e-05 |
| 63.0 | 0.1319553703069687 | 1e-05 |
| 64.0 | 0.12922300398349762 | 1e-05 |
| 65.0 | 0.12969540059566498 | 1e-05 |
| 66.0 | 0.1294255256652832 | 1e-05 |
| 67.0 | 0.12892434000968933 | 1e-05 |
| 68.0 | 0.13009504973888397 | 1e-05 |
| 69.0 | 0.1286858767271042 | 1e-05 |
| 70.0 | 0.12956416606903076 | 1e-05 |
| 71.0 | 0.12911681830883026 | 1e-05 |
| 72.0 | 0.1296709179878235 | 1e-05 |
| 73.0 | 0.1287732869386673 | 1e-05 |
| 74.0 | 0.1294514536857605 | 1e-05 |
| 75.0 | 0.12915697693824768 | 1e-05 |
| 76.0 | 0.12841865420341492 | 1e-05 |
| 77.0 | 0.12817372381687164 | 1e-05 |
| 78.0 | 0.1281365156173706 | 1e-05 |
| 79.0 | 0.1279040277004242 | 1e-05 |
| 80.0 | 0.1278274655342102 | 1e-05 |
| 81.0 | 0.1280566155910492 | 1e-05 |
| 82.0 | 0.12727053463459015 | 1e-05 |
| 83.0 | 0.12869715690612793 | 1e-05 |
| 84.0 | 0.12711170315742493 | 1e-05 |
| 85.0 | 0.12702301144599915 | 1e-05 |
| 86.0 | 0.12730672955513 | 1e-05 |
| 87.0 | 0.12725737690925598 | 1e-05 |
| 88.0 | 0.1271396279335022 | 1e-05 |
| 89.0 | 0.12912477552890778 | 1e-05 |
| 90.0 | 0.12642411887645721 | 1e-05 |
| 91.0 | 0.12625634670257568 | 1e-05 |
| 92.0 | 0.127320796251297 | 1e-05 |
| 93.0 | 0.1259581744670868 | 1e-05 |
| 94.0 | 0.1271350383758545 | 1e-05 |
| 95.0 | 0.12815390527248383 | 1e-05 |
| 96.0 | 0.1261141449213028 | 1e-05 |
| 97.0 | 0.12658798694610596 | 1e-05 |
| 98.0 | 0.1271129697561264 | 1e-05 |
| 99.0 | 0.12775172293186188 | 1e-05 |
| 100.0 | 0.12581050395965576 | 1e-05 |
| 101.0 | 0.12726755440235138 | 1e-05 |
| 102.0 | 0.12562812864780426 | 1e-05 |
| 103.0 | 0.12696777284145355 | 1e-05 |
| 104.0 | 0.12738262116909027 | 1e-05 |
| 105.0 | 0.12724792957305908 | 1e-05 |
| 106.0 | 0.12833286821842194 | 1e-05 |
| 107.0 | 0.12599430978298187 | 1e-05 |
| 108.0 | 0.12838247418403625 | 1e-05 |
| 109.0 | 0.12654130160808563 | 1e-05 |
| 110.0 | 0.12597838044166565 | 1e-05 |
| 111.0 | 0.12549486756324768 | 1e-05 |
| 112.0 | 0.12560401856899261 | 1e-05 |
| 113.0 | 0.1261509358882904 | 1e-05 |
| 114.0 | 0.12717725336551666 | 1e-05 |
| 115.0 | 0.1258397251367569 | 1e-05 |
| 116.0 | 0.12457232922315598 | 1e-05 |
| 117.0 | 0.125536248087883 | 1e-05 |
| 118.0 | 0.12458962202072144 | 1e-05 |
| 119.0 | 0.1279805451631546 | 1e-05 |
| 120.0 | 0.12609897553920746 | 1e-05 |
| 121.0 | 0.12450611591339111 | 1e-05 |
| 122.0 | 0.1254856139421463 | 1e-05 |
| 123.0 | 0.12441741675138474 | 1e-05 |
| 124.0 | 0.1260562390089035 | 1e-05 |
| 125.0 | 0.12651772797107697 | 1e-05 |
| 126.0 | 0.12526915967464447 | 1e-05 |
| 127.0 | 0.12434830516576767 | 1e-05 |
| 128.0 | 0.1253136843442917 | 1e-05 |
| 129.0 | 0.12462199479341507 | 1e-05 |
| 130.0 | 0.12565144896507263 | 1e-05 |
| 131.0 | 0.12453299760818481 | 1e-05 |
| 132.0 | 0.1274179220199585 | 1e-05 |
| 133.0 | 0.1271260529756546 | 1e-05 |
| 134.0 | 0.12498216331005096 | 1e-05 |
| 135.0 | 0.1252247840166092 | 1e-05 |
| 136.0 | 0.12617097795009613 | 1e-05 |
| 137.0 | 0.12494047731161118 | 1e-05 |
| 138.0 | 0.1247497946023941 | 1e-05 |
| 139.0 | 0.1245729923248291 | 1.0000000000000002e-06 |
| 140.0 | 0.12425211817026138 | 1.0000000000000002e-06 |
| 141.0 | 0.12417663633823395 | 1.0000000000000002e-06 |
| 142.0 | 0.12412694841623306 | 1.0000000000000002e-06 |
| 143.0 | 0.12370014935731888 | 1.0000000000000002e-06 |
| 144.0 | 0.12406766414642334 | 1.0000000000000002e-06 |
| 145.0 | 0.12380032241344452 | 1.0000000000000002e-06 |
| 146.0 | 0.12423602491617203 | 1.0000000000000002e-06 |
| 147.0 | 0.12404759973287582 | 1.0000000000000002e-06 |
| 148.0 | 0.12442447990179062 | 1.0000000000000002e-06 |
| 149.0 | 0.12393788993358612 | 1.0000000000000002e-06 |
| 150.0 | 0.12402787059545517 | 1.0000000000000002e-06 |
| 151.0 | 0.12422869354486465 | 1.0000000000000002e-06 |
| 152.0 | 0.12365838885307312 | 1.0000000000000002e-06 |
| 153.0 | 0.12383443862199783 | 1.0000000000000002e-06 |
| 154.0 | 0.12431268393993378 | 1.0000000000000002e-06 |
| 155.0 | 0.12341240048408508 | 1.0000000000000002e-06 |
| 156.0 | 0.12390484660863876 | 1.0000000000000002e-06 |
| 157.0 | 0.12473750114440918 | 1.0000000000000002e-06 |
| 158.0 | 0.12396185100078583 | 1.0000000000000002e-06 |
| 159.0 | 0.12398138642311096 | 1.0000000000000002e-06 |
| 160.0 | 0.1234150305390358 | 1.0000000000000002e-06 |
| 161.0 | 0.12368131428956985 | 1.0000000000000002e-06 |
| 162.0 | 0.12391027063131332 | 1.0000000000000002e-06 |
| 163.0 | 0.12366586923599243 | 1.0000000000000002e-06 |
| 164.0 | 0.1238330602645874 | 1.0000000000000002e-06 |
| 165.0 | 0.12347564101219177 | 1.0000000000000002e-06 |
| 166.0 | 0.12349989265203476 | 1.0000000000000002e-06 |
| 167.0 | 0.12391113489866257 | 1.0000000000000002e-07 |
| 168.0 | 0.12376048415899277 | 1.0000000000000002e-07 |
| 169.0 | 0.12376976013183594 | 1.0000000000000002e-07 |
| 170.0 | 0.12379935383796692 | 1.0000000000000002e-07 |
| 171.0 | 0.12354343384504318 | 1.0000000000000002e-07 |
| 172.0 | 0.12349338084459305 | 1.0000000000000002e-07 |
| 173.0 | 0.12366225570440292 | 1.0000000000000002e-07 |
| 174.0 | 0.12352761626243591 | 1.0000000000000002e-07 |
| 175.0 | 0.12430573999881744 | 1.0000000000000002e-07 |
Framework Versions
- Transformers: 4.56.2
- Pytorch: 2.8.0+cu128
- Datasets: 4.1.1
- Tokenizers: 0.22.1
- Downloads last month
- 323
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
π
Ask for provider support
