Model Description

This is an instruction tuned model based on the gsar78/GreekLlama-1.1B-base model.

The dataset used has 52k instruction/response pairs, all in Greek language

Notice: The model is for experimental & research purposes.

Usage

To use you can just run the following in a Colab configured with a GPU:

from transformers import AutoTokenizer, AutoModelForCausalLM
import transformers
import torch


# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("gsar78/GreekLlama-1.1B-it")
model = AutoModelForCausalLM.from_pretrained("gsar78/GreekLlama-1.1B-it")


# Check if CUDA is available and move the model to GPU if possible
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)

prompt = "Ποιά είναι τα δύο βασικά πράγματα που πρέπει να γνωρίζω για την Τεχνητή Νοημοσύνη:"

# Tokenize the input prompt
inputs = tokenizer(prompt, return_tensors="pt").to(device)

# Generate the output
generation_params = {
    #"max_new_tokens": 250,  # Adjust the number of tokens generated
    "do_sample": True,  # Enable sampling to diversify outputs
    "temperature": 0.1,  # Sampling temperature
    "top_p": 0.9,  # Nucleus sampling
    "num_return_sequences": 1,
}

output = model.generate(**inputs, **generation_params)

# Decode the generated text
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)

print("Generated Text:")
print(generated_text)
Downloads last month
9
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for gsar78/GreekLlama-1.1B-it

Quantizations
2 models

Collection including gsar78/GreekLlama-1.1B-it